| 研究生: |
洪偉恩 Hong, Wei-En |
|---|---|
| 論文名稱: |
具有多功能性金-氧化鐵奈米材料應用於磁分離,表面增強拉曼散射,光熱移除有害生物 Multifunctional plasmonic Au- Fe3O4 nanohybrid for magnetic separation, surface enhanced Raman scattering, and photothermal ablation to treat malignant organism |
| 指導教授: |
黃志嘉
Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 光熱療法 、氧化鐵 、殺菌 、拉曼光譜 |
| 外文關鍵詞: | photothermal therapy, Fe3O4, antibacteria, Raman spectra |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多巴胺結合金與氧化鐵粒子合成金奈米氧化鐵材料,合成過程中不需額外加入化學品且耗費的時間僅需10分鐘,金奈米氧化鐵材料在750 nm處具有增近紅外光吸收之特性,且結合三種過去發現的光熱材料並達到更好的光熱轉換效率,除了光熱方面的應用還可利用於檢測細菌,透過表面增強拉曼光譜來辨別細菌的存在,而傳統檢測方式可分為計數法、顯微鏡檢法、冷光量測法,但這些方法需要耗費時間及人力資源且量測準度會因處理時間上升而降低,本研究利用近1W紅外雷射激發50 ppm的金奈米氧化鐵材料,可使材料升溫到60 °C並具備光熱升溫殺菌之效果,同時收集樣品產生的拉曼光譜,即可透過訊號來判別細菌的存在,且利用材料本身的磁性達到回收再利用的效果。
The integration of magnetic and optical functions with nano-Fe3O4 and nano-Au showed mag-netic-guided concentration to improve the signal responsive sensitivity of surface enhanced Raman scattering (SERS) and the photothermal conversion efficiency to track and treat cancer cells. Here-in,we utilized L-dopamine molecules as a buffer layer to spontaneous growth of Au shell around the Fe3O4 nanoclusters. After the generation of Au-Fe3O4 nanohybrid, the specific surface plasmon resonance peak at ~ 750 nm appeared that the peak position was depended on the synthesis param-eters, i.e., reagent concentrations and reaction temperatures. We analyzed the SERS effect (with a micro-Raman using a 785 nm laser) of Au-Fe3O4 nanohybrid decorated with 4-Aminothiophenol, displaying strong 4-fold signal intensity enhancement at 1071cm-1 and 1572 cm-1 after magnetic concentration as compared to magnetic free Au-Fe3O4 nanohybrid. As subject the Au-Fe3O4 nano-hybrid to 808 nm laser light, a particle-including solution temperature increased from 27 °C to the 60 °C. Such temperature could be applied to photothermal destruction of HeLa cancer cells. In ad-ditional, we demonstrated that the Au-Fe3O4 nanohybrid is useful label-free material to distinguish the optical fingerprint Escherichia coli and Staphylococcus aureus by using SERS spectra. As ex-posure of particle-treated microbe to 808 nm laser after collection with a magnet, the anti-bacteria experiment showed ~99% killing rate for 1x105 cfu/ mL of E. coli and S. aureus with Au-Fe3O4 na-nohybrid (50 ppm[Fe]).
[1] Jaque, D., Maestro, L. M., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., Sole, J. G. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494-9530.
[2] C. A. Wunderlich, On the temperature in diseases, The New Sydenham Society, 1871.
[3] Caccamo, A. E., Desenzani, S., Belloni, L.,Borghetti, A. F., & Bettuzzi, S. (2006). Nuclear clusterin accumulation during heat shock response: Implications for cell survival and thermo-tolerance induction in immortalized and prostate cancer cells. Journal of Cellular Physiology, 207(1), 208-219. doi:10.1002/jcp.20561
[4] Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., Waldofner, N., Scholz, R.,Jordan, A. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles nanoparticles: Presentation of a new interstitial technique.International Journal of Hyperthermia, 21(7), 637-647. doi:10.1080/02656730500158360
[5] Hashmi, J. T., Huang, Y. Y., Osmani, B. Z., Sharma, S. K., Naeser, M. A., & Ham-blin, M. R. (2010). Role of Low-Level Laser Therapy in Neurorehabilitation. Pm&R, 2(12), S292-S305. doi:10.1016/j.pmrj.2010.10.013
[6] Ahrar, K., Gowda, A., Javadi, S., Borne, A., Fox, M., McNichols, R, Stafford, R. J. (2010). Preclinical Assessment of a 980-nm Diode Laser Ablation System in a Large Animal Tumor Model. Journal of Vascular and Interventional Radiology, 21(4), 555-561. doi:10.1016/j.jvir.2010.01.002
[7] Yuan, G., Yuan, Y. J., Xu, K., & Luo, Q. (2014). Biocompatible PEGylated Fe3O4 Nanoparticles as Photothermal Agents for Near-Infrared Light Modulated Cancer Therapy. International Journal of Molecular Sciences, 15(10), 18776-18788. doi:10.3390/ijms151018776
[8] Tong, L., Zhao, Y., Huff, T. B., Hansen, M. N., Wei, A., & Cheng, J. X. (2007). Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials, 19(20), 3136-+. doi:10.1002/adma.200701974
[9] Davies, J. (1995). VICIOUS CIRCLES - LOOKING BACK ON RESISTANCE PLASMIDS. Genetics, 139(4), 1465-1468.
[10] Hager T (2006) The Demon Under the Microscope: From Battlefield Hospitals to Nazi Laboratories,One Doctor’s Heroic Search for the World’s First Miracle Drug. New York, NY, USA: Harmony Books
[11] Davies, J. (2007). Microbes have the last word. Embo Reports, 8(7), 616-621. doi:10.1038/sj.embor.7401022
[12] Huh, A. J., & Kwon, Y. J. (2011). "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128-145. doi:10.1016/j.jconrel.2011.07.002
[13] Gu, H. W., Ho, P. L., Tsang, K. W. T., Wang, L., & Xu, B. (2003). Using biofunc-tional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society, 125(51), 15702-15703. doi:10.1021/ja0359310
[14] Dai, X. M., Fan, Z., Lu, Y. F., & Ray, P. C. (2013). Multifunctional Nanoplat-forms for Targeted Multidrug-Resistant-Bacteria Theranostic Applications. Acs Applied Materials & Interfaces, 5(21), 11348-11354. doi:10.1021/am403567k
[15] Huang, X. H. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research (2010) 1, 13–28.
[16] Chen, J. Y., Glaus, C., Laforest, R., Zhang, Q., Yang, M. X., Gidding, M, Xia, Y. N. (2010). Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small, 6(7), 811-817. doi:10.1002/smll.200902216
[17] Lambert, T. N., Andrews, N. L., Gerung, H., Boyle, T. J., Oliver, J. M., Wilson, B. S., & Han, S. M. (2007). Water-soluble germanium(0) nanocrystals: Cell recogni-tion and near-infrared photothermal conversion properties. Small, 3(4), 691-699. doi:10.1002/smll.200600529
[18] Tian, Q. W., Tang, M. H., Sun, Y. G., Zou, R. J., Chen, Z. G., Zhu, M. F., Hu, J. Q. (2011). Hydrophilic Flower-Like CuS Superstructures as an Efficient 980 nm Laser-Driven Photothermal Agent for Ablation of Cancer Cells. Advanced Materials, 23(31), 3542-+. doi:10.1002/adma.201101295
[19] Liu, B., Zhang, X. Y., Li, C. X., He, F., Chen, Y. Y., Huang, S. S., Lin, J. (2016). Magnetically targeted delivery of DOX loaded Cu9S5@mSiO(2)@ Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. Nanoscale, 8(25), 12560-12569. doi:10.1039/c5nr06322a
[20] Yu, J., Javier, D., Yaseen, M. A., Nitin, N., Richards-Kortum, R., Anvari, B., & Wong, M. S. (2010). Self-Assembly Synthesis, Tumor Cell Targeting, and Photo-thermal Capabilities of Antibody-Coated Indocyanine Green Nanocapsules. Jour-nal of the American Chemical Society, 132(6), 1929-1938. doi:10.1021/ja908139y
[21] Cheng, L., He, W. W., Gong, H., Wang, C., Chen, Q., Cheng, Z. P., & Liu, Z. (2013). PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy. Advanced Functional Materials, 23(47), 5893-5902. doi:10.1002/adfm.201301045
[22] Liao, M. Y., Lai, P. S., Yu, H. P., Lin, H. P., & Huang, C. C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chemical Communications, 48(43), 5319-5321. doi:10.1039/c2cc31448g
[23] Huang, C. C., Chang, P. Y., Liu, C. L., Xu, J. P., Wu, S. P., & Kuo, W. C. (2015). New insight on optical and magnetic Fe3O4 nanoclusters promising for near infra-red theranostic applications. Nanoscale, 7(29), 12689-12697. doi:10.1039/c5nr03157e
[24] Lee, I. S., Lee, N., Park, J., Kim, B. H., Yi, Y. W., Kim, T., Hyeon, T. (2006). Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. Journal of the American Chemical Society, 128(33), 10658-10659. doi:10.1021/ja063177n
[25] Karunakaran, G., Jagathambal, M., Gusev, A., Kolesnikov, E., & Kuznetsov, D. (2017). Assessment of FeO and MnO Nanoparticles Toxicity on Chlorella pyre-noidosa. Journal of Nanoscience and Nanotechnology, 17(3), 1712-1720. doi:10.1166/jnn.2017.12927
[26] Hu, H., Han, L., Yu, M. Z., Wang, Z. Y., & Lou, X. W. (2016). Met-al-organic-framework-engaged formation of Co nanoparticle-embedded car-bon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy & Environmental Science, 9(1), 107-111. doi:10.1039/c5ee02903a
[27] Na, H. B., Song, I. C., & Hyeon, T. (2009). Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials, 21(21), 2133-2148. doi:10.1002/adma.200802366
[28] Di Corato, R., Bealle, G., Kolosnjaj-Tabi, J., Espinosa, A., Clement, O., Silva, A. K. A., Wilhelm, C. (2015). Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes. Acs Nano, 9(3), 2904-2916. doi:10.1021/nn506949t
[29] Shinkai, M. (2002). Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering, 94(6), 606-613. doi:10.1016/s1389-1723(02)80202-x
[30] Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., & Wil-helm, C. (2016). Duality of Iron Oxide Nanoparticles in Cancer Therapy: Ampli-fication of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bi-modal Treatment. Acs Nano, 10(2), 2436-2446. doi:10.1021/acsnano.5b07249
[31] Wu, M. L., Li, Y. Y., Yue, R., Zhang, X. D., & Huang, Y. M. (2017). Removal of silver nanoparticles by mussel-inspired Fe3O4 @ polydopamine core-shell micro-spheres and its use as efficient catalyst for methylene blue reduction. Scientific Reports, 7. doi:10.1038/srep42773
[32] Kuo, W. S., Wu, C. M., Yang, Z. S., Chen, S. Y., Chen, C. Y., Huang, C. C., .Yeh, C. S. (2008). Biocompatible bacteria@Au composites for application in the pho-tothermal destruction of cancer cells. Chemical Communications(37), 4430-4432. doi:10.1039/b808871c
[33] Chen, J. Y., Glaus, C., Laforest, R., Zhang, Q., Yang, M. X., Gidding, M., Xia, Y. N. (2010). Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small, 6(7), 811-817. doi:10.1002/smll.200902216
[34] Gharatape, A., Davaran, S., Salehi, R., & Hamishehkar, H. (2016). Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. Rsc Ad-vances, 6(112), 111482-111516. doi:10.1039/c6ra18760a
[35] Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated ab-sorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 110(14), 7238-7248. doi:10.1021/jp057170o
[36] Weber, V., Feis, A., Gellini, C., Pilot, R., Salvi, P. R., & Signorini, R. (2015). Far- and near-field properties of gold nanoshells studied by photoacoustic and sur-face-enhanced Raman spectroscopies. Physical Chemistry Chemical Physics, 17(33), 21190-21197. doi:10.1039/c4cp05054a
[37] Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecu-lar chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293-346. doi:10.1021/cr030698+
[38] Chung, T., Lee, S. Y., Song, E. Y., Chun, H., & Lee, B. (2011). Plasmonic Nanostructures for Nano-Scale Bio-Sensing. Sensors, 11(11), 10907-10929. doi:10.3390/s111110907
[39] Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (1999). Ultrasen-sitive chemical analysis by Raman spectroscopy. Chemical Reviews, 99(10), 2957-+. doi:10.1021/cr980133r
[40] Levin, C. S., Hofmann, C., Ali, T. A., Kelly, A. T., Morosan, E., Nordlander, P., Halas, N. J. (2009). Magnetic-Plasmonic Core-Shell Nanoparticles. Acs Nano, 3(6), 1379-1388. doi:10.1021/nn900118a
[41] Salihov, S. V., Ivanenkov, Y. A., Krechetov, S. P., Veselov, M. S., Sviridenkova, N. V., Savchenko, A. G., Majouga, A. G. (2015). Recent advances in the synthesis of Fe3O4 @AU core/shell nanoparticles. Journal of Magnetism and Magnetic Mate-rials, 394, 173-178. doi:10.1016/j.jmmm.2015.06.012
[42] Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2014). Preparation and characteri-zation of magnetic gold nanoparticles to be used as doxorubicin nanocarriers. Physica Medica-European Journal of Medical Physics, 30(7), 843-848. doi:10.1016/j.ejmp.2014.05.012
[43] Zhou, H., Lee, J., Park, T. J., Lee, S. J., Park, J. Y., & Lee, J. (2012). Ultrasensi-tive DNA monitoring by Au-Fe3O4 nanocomplex. Sensors and Actuators B-Chemical, 163(1), 224-232. doi:10.1016/j.snb.2012.01.040
[44] Maleki, H., Simchi, A., Imani, M., & Costa, B. F. O. (2012). Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials, 324(23), 3997-4005. doi:10.1016/j.jmmm.2012.06.045
[45] Chaudhuri, R. G., & Paria, S. (2012). Core/Shell Nanoparticles: Classes, Proper-ties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112(4), 2373-2433. doi:10.1021/cr100449n
[46] Huang, W. C., Tsai, P. J., & Chen, Y. C. (2009). Multifunctional Fe3O4@Au Nanoeggs as Photothermal Agents for Selective Killing of Nosocomial and Anti-biotic-Resistant Bacteria. Small, 5(1), 51-56. doi:10.1002/smll.200801042
[47] Dong, W. J., Li, Y. S., Niu, D. C., Ma, Z., Gu, J. L., Chen, Y., Shi, J. L. (2011). Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Advanced Materials, 23(45), 5392-+. doi:10.1002/adma.201103521
[48] Ding, Q. D., Zhou, H. J., Zhang, H. M., Zhang, Y. X., Wang, G. Z., & Zhao, H. J. (2016). 3D Fe3O4@Au@Ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactionst. Journal of Ma-terials Chemistry A, 4(22), 8866-8874. doi:10.1039/c6ta02264b
[49] Wang, C. W., Wang, J. F., Li, M., Qu, X. Y., Zhang, K. H., Rong, Z., Wang, S. Q. (2016). A rapid SERS method for label-free bacteria detection using polyethyl-enimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst, 141(22), 6226-6238. doi:10.1039/c6an01105e
[50] Huang, J., Guo, M., Ke, H. T., Zong, C., Ren, B., Liu, G., Zhang, Z. J. (2015). Rational Design and Synthesis gamma Fe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Advanced Materials, 27(34), 5049 doi:10.1002/adma.201501942
[51] Li, S., Xu, L. G., Ma, W., Kuang, H., Wang, L. B., & Xu, C. L. (2015). Triple Raman Label-Encoded Gold Nanoparticle Trimers for Simultaneous Heavy Metal Ion Detection. Small, 11(28), 3435-3439. doi:10.1002/smll.201403356
[52] Liu, Y. L., Ai, K. L., Liu, J. H., Deng, M., He, Y. Y., & Lu, L. H. (2013). Dopa-mine-Melanin Colloidal Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy. Advanced Materials, 25(9), 1353-1359. doi:10.1002/adma.201204683
[53] Kumar, A., Kumar, S., Rhim, W. K., Kim, G. H., & Nam, J. M. (2014). Oxidative Nanopeeling Chemistry-Based Synthesis and Photodynamic and Photothermal Therapeutic Applications of Plasmonic Core-Petal Nanostructures. Journal of the American Chemical Society, 136(46), 16317-16325. doi:10.1021/ja5085699
[54] Black, K. C. L., Liu, Z. Q., & Messersmith, P. B. (2011). Catechol Redox In-duced Formation of Metal Core-Polymer Shell Nanoparticles. Chemistry of Mate-rials, 23(5), 1130-1135. doi:10.1021/cm1024487
[55] Zheng, M. B., Zhao, P. F., Luo, Z. Y., Gong, P., Zheng, C. F., Zhang, P. F., . . . Cai, L. T. (2014). Robust ICG Theranostic Nanoparticles for Folate Targeted Cancer Imaging and Highly Effective Photothermal Therapy. Acs Applied Materials & Interfaces, 6(9), 6709-6716. doi:10.1021/am5004393
[56] Temur, E., Boyaci, I. H., Tamer, U., Unsal, H., & Aydogan, N. (2010). A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Analytical and Bioanalytical Chemistry, 397(4), 1595-1604. doi:10.1007/s00216-010-3676-x
[57] Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar and P. C. Ray, Chem.–Eur. J., 2013, 19, 2839–2847.
[58] R. Shokri, M. Salouti and R. S. Zanjani, J. Microbiol., 2015, 53, 116–121.
[59] K. C. Black, T. S. Sileika, J. Yi, R. Zhang, J. G. Rivera and P. B. Messersmith, Small, 2014, 10, 169–178.
[60] B. Hu, L.-P. Zhang, X.-W. Chen and J.-H. Wang, Nanoscale, 2013, 5, 246–252.
[61] B. Khlebtsov, E. Tuchina, V. Tuchin and N. Khlebtsov, RSC Adv., 2015, 5, 61639–61649.
[62] X. Dai, Z. Fan, Y. Lu and P. C. Ray, ACS Appl. Mater. Interfaces, 2013, 5, 11348–11354.
[63] N. J. Millenbaugh, J. B. Baskin, M. N. DeSilva, W. R. Elliott and R. D. Glickman, Int. J. Nanomed., 2015, 10, 1953.
[64] L. Mocan, I. Ilie, C. Matea, F. Tabaran, E. Kalman, C. Iancu and T. Mocan, IInt. J. Nanomed., 2014, 9, 1453.
[65] Y. Lin and A. T. Hamme II, Analyst, 2014, 139, 3702–3705.
[66]Ye, M., Wei, Z. W., Hu, F., Wang, J. X., Ge, G. L., Hu, Z. Y., Liu, J. (2015). Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale, 7(32), 13427-13437. doi:10.1039/c5nr02491a
[67]Hu, F., Lin, H. Y., Zhang, Z. S., Liao, F., Shao, M. W., Lifshitz, Y., & Lee, S. T. (2014). Smart Liquid SERS Substrates based on Fe3O4/Au Nanoparticles with Reversibly Tunable Enhancement Factor for Practical Quantitative Detection. Scientific Reports, 4. doi:10.1038/srep07204
[68] Wheeler, D. A., Adams, S. A., Lopez-Luke, T., Torres-Castro, A., & Zhang, J. Z. (2012). Magnetic Fe3O4-Au core-shell nanostructures for surface enhanced Raman scattering. Annalen Der Physik, 524(11), 670-679. doi:10.1002/andp.201200161
[69] Zhou, J. J., Wang, P., Wang, C. X., Goh, Y. T., Fang, Z., Messersmith, P. B., & Duan, H. W. (2015). Versatile Core-Shell Nanoparticle@Metal-Organic Frame-work Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Struc-tural Integration. Acs Nano, 9(7), 6951-6960. doi:10.1021/acsnano.5b01138
[70] Krishnamurthy, S., Esterle, A, Sharma, N. C., & Sahi, S. V. (2014). Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Research Letters, 9. doi:10.1186/1556-276x-9-627
[71] Wang, L. Y., Luo, J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Zhong, C. J. (2005). Monodispersed core-shell Fe3O4@Au nanoparticles. Journal of Physical Chemistry B, 109(46), 21593-21601. doi:10.1021/jp0543429
[72] Zhu, J, Lu, Y. J, Li, Y. G., Jiang, J., Cheng, L., Liu, Z., Gu, H. W. (2014). Synthe-sis of Au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale, 6(1), 199-202. doi:10.1039/c3nr04730j
[73] Li, C. Y., Huang, Y. Q., Lai, K. Q., Rasco, B. A., & Fan, Y. X. (2016). Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Ra-man spectroscopy. Food Control, 65, 99-105. doi:10.1016/j.foodcont.2016.01.017
[74] Quynh, L. M., Nam, N. H., Kong, K., Nhung, N. T., Notingher, I., Henini, M., & Luong, N. H. (2016). Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection. Journal of Electronic Materials, 45(5), 2563-2568. doi:10.1007/s11664-016-4421-9
[75] 楊梅玉, “可供大腸桿菌拉曼光譜增顯之研究”,國立成功大學生物醫學工程
學系碩士論文,2012。
校內:2021-01-01公開