| 研究生: |
莊智翔 Chuang, Chih-Hsiang |
|---|---|
| 論文名稱: |
利用Q開關產生圓柱向量偏振的渦流脈衝Nd:GdVO4雷射 Cylindrical Vector Beam with Optical Vortices in a Q-switched Nd:GdVO4 Laser |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 圓柱向量光束 、光束品質因子M^2 、Q開關脈衝 、聲光調製器 、光學渦流 |
| 外文關鍵詞: | cylindrical vector beam, beam quality factor M^2, Q-switch, Acousto-Optic Modulator, optical vortex |
| 相關次數: | 點閱:258 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要使用雙折射增益晶體Nd:GdVO4和聲光調製器,透過ABCD Law計算雷射穩定區範圍 0 ≤ G1G2 ≤ 1,設計四面鏡的共振腔架構,藉此產生圓柱向量光束,並且只需調整輸出耦合鏡的位置,就能任意改變輸出光為徑向偏振光或方位角偏振光,另外給予聲光調製器15 kHz的方波產生Q開關脈衝,量測偏振度確保Q開關脈衝下,徑向偏振光和方位角偏振光依然維持良好的偏振特性,再經由Beam profile量測光束品質因子M^2 大小,得到圓柱向量光束的Mx^2、My^2 約在3附近,最後使用馬赫-曾德爾干涉儀去觀察相位變化,發現不管是徑向偏振光或方位角偏振光皆為拓樸電荷l = 1 的光學渦流。
SUMMARY
In the thesis ,we mainly use a birefringent laser crystal and an Acousto-Optic Modulator (AOM) along with a four-element cavity (The stable region (0 ≤ G1G2 ≤ 1) was calculated through ABCD Law for further cavity design) to generate cylindrical vector beams. By adjusting output coupler’s position, we can manipulate the output beam to be radially- or azimuthally-polarized. Moreover, Q-switched laser beams can be obtained by adding a 15 kHz square wave signal to the AOM. The high percentages of DOP indicate that the output beams still maintain good polarization quality. Next, the beam quality factor M^2 was measured by beam profile ,and then the results of Mx^2 and My^2 were about 3, which is the theoretic value of LG01 mode. The results brought us to the exploration of the vortex characteristics, which were verified by the Mach-Zehnder interferometer. We found out that whether the output beam was radially- or azimuthally-polarized beam, the topological charges l were 1.
1. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Adv. Opt. Photon. 1, 1-57 (2009).
2. Y. Kozawa, and S. Sato, "Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams," Optics Express 18, 10828-10833 (2010).
3. W. Chen, and Q. Zhan, "Three-dimensional focus shaping with cylindrical vector beams," Optics Communications 265, 411-417 (2006).
4. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Optics express 12, 3377-3382 (2004).
5. M. Meier, V. Romano, and T. Feurer, "Material processing with pulsed radially and azimuthally polarized laser radiation," Applied Physics A 86, 329-334 (2007).
6. V. Niziev, and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," Journal of Physics D:Applied Physics 32, 1455 (1999).
7. W. Kimura, G. Kim, R. Romea, L. Steinhauer, I. Pogorelsky, K. Kusche, R. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Physical review letters 74, 546 (1995).
8. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Physical Review Letters 86, 5251 (2001).
9. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Applied Optics 29, 2234-2239 (1990).
10. M. Stalder, and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Optics letters 21, 1948-1950 (1996).
11. M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Optics express 18, 212-217 (2010).
12. K. Yonezawa, Y. Kozawa, and S. Sato, "Compact laser with radial polarization using birefringent laser medium," Japanese Journal of Applied Physics 46, 5160 (2007).
13. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, "Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes," Applied Optics 46, 3304-3310 (2007).
14. Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Optics Letters 30, 3063-3065 (2005).
15. J.-F. Bisson, J. Li, K. Ueda, and Y. Senatsky, "Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon," Optics Express 14, 3304-3311 (2006).
16. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers," Optics letters 32, 3272-3274 (2007).
17. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Optics letters 31, 2151-2153 (2006).
18. K.-C. Chang, T. Lin, and M.-D. Wei, "Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon," Optics express 21, 16035-16042 (2013).
19. K.-C. Chang, and M.-D. Wei, "Generation and transformation of azimuthal and radial polarization in a typically three-element Nd:GdVO4 laser," in Laser Beam Shaping XV(International Society for Optics and Photonics2014), p. 919415.
20. K.-G. Hong, B.-J. Hung, and M.-D. Wei, "Low threshold of a continuous-wave mode-locked and azimuthally polarized Nd: YVO4 laser with a semiconductor saturable absorber mirror," Journal of Optics 18, 125603 (2016).
21. J. H. Poynting, "The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
22. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Physical Review 50, 115 (1936).
23. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical review A 45, 8185 (1992).
24. M. Padgett, and L. Allen, "Light with a twist in its tail," Contemporary physics 41, 275-285 (2000).
25. D. G. Grier, "A revolution in optical manipulation," nature 424, 810-816 (2003).
26. J. E. Curtis, and D. G. Grier, "Structure of optical vortices," Physical review letters 90, 133901 (2003).
27. K. Gahagan, and G. Swartzlander, "Optical vortex trapping of particles," Optics Letters 21, 827-829 (1996).
28. J. Wang, "Advances in communications using optical vortices," Photonics Research 4, B14-B28 (2016).
29. S. Franke‐Arnold, L. Allen, and M. Padgett, "Advances in optical angular momentum," Laser & Photonics Reviews 2, 299-313 (2008).
30. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, "Using optical vortex to control the chirality of twisted metal nanostructures," Nano letters 12, 3645-3649 (2012).
31. S. W. Hell, and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Optics letters 19, 780-782 (1994).
32. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Optics communications 112, 321-327 (1994).
33. M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, "Astigmatic laser mode converters and transfer of orbital angular momentum," Optics Communications 96, 123-132 (1993).
34. N. Heckenberg, R. McDuff, C. Smith, and A. White, "Generation of optical phase singularities by computer-generated holograms," Optics letters 17, 221-223 (1992).
35. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, "Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators," JOSA A 25, 1642-1651 (2008).
36. A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, "Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator," Optics letters 38, 534-536 (2013).
37. Y. Han, and G. Zhao, "Measuring the topological charge of optical vortices with an axicon," Optics letters 36, 2017-2019 (2011).
38. A. Ito, Y. Kozawa, and S. Sato, "Generation of hollow scalar and vector beams using a spot-defect mirror," JOSA A 27, 2072-2077 (2010).
39. Y.-Y. Lin, C.-C. Yeh, H.-C. Lee, S.-L. Yang, J.-H. Tu, and C.-P. Tang, "Optical vortex lasers by the coherent superposition of off-axis multiple-pass transverse modes in an azimuthal symmetry breaking laser resonator," Journal of Optics 20, 075203 (2018).
40. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, "Generation of cylindrical vector vortex beams by two cascaded metasurfaces," Optics express 22, 17207-17215 (2014).
41. D. Chen, Y. Miao, H. Fu, H. He, J. Tong, and J. Dong, "High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency," APL Photonics 4, 106106 (2019).
42. A. E. Siegman, "How to (maybe) measure laser beam quality," in Diode Pumped Solid State Lasers: Applications and Issues(Optical Society of America1998), p. MQ1.
43. Moshe, S. Jackel, and A. Meir, "Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Optics letters 28, 807-809 (2003).
44. Y.-J. Yu, X.-Y. Chen, C. Wang, C.-T. Wu, M. Yu, and G.-Y. Jin, "High repetition rate 880 nm diode-directly-pumped electro-optic Q-switched Nd: GdVO4 laser with a double-crystal RTP electro-optic modulator," Optics communications 304, 39-42 (2013).
45. E. e. Nanii, A. I. Odintsov, A. I. Panakov, A. P. Smirnov, and A. I. Fedoseev, "Simultaneous mode locking and Q-switching in a solid-state laser with a travelling-wave acousto-optic modulator and retroreflector," Quantum Electronics 49, 119 (2019).
46. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE Journal of selected topics in QUANTUM ELECTRONICS 2, 435-453 (1996).
47. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Applied Physics Letters 77, 3322-3324 (2000).
48. A. M. Yao, and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. 3, 161-204 (2011).
49. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, "Divergence of an orbital-angular-momentum-carrying beam upon propagation," New Journal of Physics 17, 023011 (2015).
50. M. Padgett, J. Courtial, and L. Allen, "Light's orbital angular momentum," Physics today 57, 35-40 (2004).
51. T. Verdeyen, "Laser electronics," lael (1989).
52. S. O. Kasap, Optoelectronics and photonics (Prentice Hall, 2001).
53. P. Bélanger, "Beam propagation and the ABCD ray matrices," Optics letters 16, 196-198 (1991).
54. B. E. Saleh, and M. C. Teich, Fundamentals of photonics (john Wiley & sons, 2019).
55. G. F. Marshall, and G. E. Stutz, Handbook of optical and laser scanning (CRC Press, 2011).
56. H. Yu, Y. Liu, A. Braglia, G. Rossi, and G. Perrone, "Investigation of collimating and focusing lenses’ impact on laser diode stack beam parameter product," Applied optics 54, 10240-10248 (2015).
57. A. E. Siegman, "New developments in laser resonators," in Optical resonators(International Society for Optics and Photonics1990), pp. 2-14.
58. M. Inguscio, and R. Wallenstein, Solid State Lasers: New Developments and Applications (Springer Science & Business Media, 2012).
59. N. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre–Gaussian modes," Journal of modern optics 43, 2485-2491 (1996).