簡易檢索 / 詳目顯示

研究生: 楊上德
Yang, Shang-De
論文名稱: 利用注入鎖定技術實現之低功率正交相位移鍵發射機
A Low-Power Quadrature Phase Shift Keying Transmitter with Injection Locking Technique
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: 發射機低功率正交相位鍵移調變注入鎖定
外文關鍵詞: transmitter, low power, quadrature phase shift keying modulation, injection-lock
相關次數: 點閱:91下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個低功率的正交相位移鍵發射機。此發射機架構避免使用高耗能的正交電壓控制振盪器及鎖相迴路。透過注入鎖定的技術,穩定發射機的操作頻率並抑制相位雜訊。利用低頻率低耗能的注入鎖定振盪器來產生相位變化,並使用倍頻電路將頻率提升至載波頻率,輸出正交相位。除此之外,發射機與分數型頻率合成器整合,具有高解析度多通道通訊的功能。輸出級為一個低功率操作的非線性功率放大器。能支援正交相位移鍵、頻率移鍵、及開關鍵控三種調變方式。
    此晶片使用台積電90奈米 1P9M金氧互補式半導體製程製作。發射機的操作頻率為工業、科學、醫療用頻帶(ISM) 433百萬赫茲,供應電壓為1伏特。在模擬結果中,輸出功率為 -18.5 dBm下,消耗0.51毫瓦,正交相位移鍵調變的誤差向量幅度EVM為4 %,資料速率為每秒1.6百萬位元。晶片尺寸為1.14×0.74平方毫米。

    This thesis proposes a low-power quadrature phase shift keying (QPSK) transmitter. This architecture avoids to use high power quadrature voltage control oscillator (QVCO) and phase locked loop (PLL). Injection locking technique is utilized to stable the operating frequency and suppress the phase noise. A low frequency, low power injection-lock oscillator is employed to generate the required phase shift. And then, the quadrature phase output is produced by a frequency multiplier. The output stage is a nonlinear power amplifier with low power operation feature. Besides, this transmitter is combined with fractional type frequency synthesizer and possesses the ability of high resolution multi-channel communication. In addition, this transmitter supports three kinds of modulation such as QPSK, FSK and OOK.
    The prototype chip is fabricated with TSMC 90 nm 1P9M CMOS process. The operating frequency of transmitter is industry, science, medical band (ISM ) 433 MHz. The supply Voltage is 1 V. The output power is -18.5 dBm, consuming 0.51 mW, EVM is 4% and data rate is 1.6 Mb/sec in simulation. The chip size is 1.14×0.74 mm2.

    List of Tables VII List of Figure VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Consideration of Transmitter 3 1.2.1 Frequency Band 3 1.2.2 Modulation 3 1.2.3 Data Rate 5 1.2.4 Output Power 5 1.2.5 Figure of Merit of Transmitter 6 1.3 Thesis Organization 6 Chapter 2 Literature Review of Low-power Transmitters 8 2.1 Direct Conversion Transmitter 8 2.2 Low-Power Transmitter 9 2.2.1. On-Off Keying Transmitter 9 2.2.2. Injection-Lock Frequency Shift Keying Transmitter 9 2.3.1 Multi-Channel Injection-Lock FSK Transmitter 10 2.3 Quadrature Phase Shift Keying Transmitter 12 2.3.1 Mux-based QPSK Transmitter 12 2.3.2 Injection-Locked QPSK Transmitter 13 2.4 Summary 14 Chapter 3 Proposed Injection-Locked QPSK Transmitter 16 3.1 QPSK Transmitter Architecture 16 3.2 Circuit Implementation and Simulation 19 3.2.1 Injection-Locked Frequency Synthesizer 19 3.2.2 Phase Modulator 21 3.2.3 Edge Combine Power Amplifier 36 3.3 Performance Evaluation for Proposed QPSK Transmitter 40 Chapter 4 Test Setup and Measurement Results 44 4.1 Introduction 44 4.2 Test Setup 45 4.3 Measurement Results 48 4.3.1. Frequency Synthesizer 48 4.3.2. Phase Modulator 50 4.3.3. Edge Combine Power Amplifier 51 4.3.4. Conclusion of Measurement Results 53 Chapter 5 Conclusion and Future Work 55 5.1 Conclusion 55 5.2 Future Work 55 Appendix Ultra-Low-Power Ultra-Wideband Low Noise Amplifier with Feedback Technique 58 A.1 Introduction 58 A.2 Conventional Ultra-Wideband Low Noise Amplifier 59 A.2.1 Common-Gate Amplifier and Shunt Feedback Amplifier 59 A.2.2 Current-Reused Amplifier 61 A.2.3 Gm-Boosted Technique 62 A.2.4 Positive Feedback Low Noise Amplifier 63 A.2.5 Common Gate and Shunt Feedback Hybrid LNA 64 A.3 Proposed Ultra-Wideband Low Noise Amplifier 66 A.3.1 Positive Feedback Low Noise Amplifier 66 A.3.2 Negative Feedback Low Noise Amplifier 71 A.3.3 Summary 73 A.4 Circuit Design of Ultra-Wideband LNA 74 A.4.1 Design of Ultra-Wideband LNA 74 A.4.2 Simulation Results of Ultra-Wideband LNA 77 A.5 Measurement Results 84 A.5.1 Measurement Setup 84 A.5.2 Discussion and Modification for UWB LNA 87 A.6 Conclusion 90 Bibliography 91

    [1] W.-H. Ho, “A Low Power Multi-Channel FSK Transmitter with Injection Locking Technique,” M.S. Thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C, 2014
    [2] B. Razavi, RF microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2012.
    [3] J. C. Chien and L. H. Lu, "Analysis and Design of Wideband Injection-Locked Ring Oscillators With Multiple-Input Injection," IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1906-1915, Sept. 2007.
    [4] L. J. Paciorek, "Injection locking of oscillators," in Proceedings of the IEEE, vol. 53, no. 11, pp. 1723-1727, Nov. 1965.
    [5] B. Razavi, "A study of injection locking and pulling in oscillators," in IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sept. 2004.
    [6] A. Amer, E. Hegazi and H. F. Ragaie, "A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007.
    [7] S. J. Cheng, Y. Gao, W. Da Toh, Y. Zheng, M. Je, and C. H. Heng, “A 110pJ/b Multichannel FSK/GMSK/QPSK/p/4-DQPSK Transmitter with Phase-Interpolated Dual-Injection DLL-Based Synthesizer Employing Hybrid FIR,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap., vol. 56, 2013, pp. 450–451.
    [8] Liang Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 5, pp. 328-338, May 2002.
    [9] S. Diao, Y. Zheng, Y. Gao, X. Yuan, M. Je and C. H. Heng, "A 5.9mW 50Mbps CMOS QPSK/O-QPSK Transmitter Employing Injection Locking for Direct Modulation," IEEE Asian Solid-State Circuits Conference, 2010, pp. 1-4.
    [10] M. Elbadry, B. Sadhu, J. X. Qiu, and R. Harjani, “Dual-Channel Injection-Locked Quadrature LO Generation for a 4-GHz Instantaneous Bandwidth Receiver at 21-GHz center frequency,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1186–1199, 2013.
    [11] Y. Gao et al., "An Asymmetrical QPSK/OOK Transceiver SoC and 15:1 JPEG Encoder IC for Multifunction Wireless Capsule Endoscopy," 2012 IEEE Asian Solid State Circuits Conference (A-SSCC), 2012, pp. 341-344.
    [12] M. Rahman, M. Elbadry and R. Harjani, "An IEEE 802.15.6 Standard Compliant 2.5 nJ/Bit Multiband WBAN Transmitter Using Phase Multiplexing and Injection Locking," in IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1126-1136, May 2015.
    [13] J. Kim, S. Hoyos, and J. Silva-Martinez, “Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimization,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 9, pp. 2340–2351, 2010.
    [14] N. Lanka, S. Patnaik and R. Harjani, "Understanding the Transient Behavior of Injection Locked LC Oscillators," 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 667-670.
    [15] S. Y. Lee, H. Ito, N. Ishihara, and K. Masu, “A Novel Direct Injection-Locked QPSK Modulator Based on Ring VCO in 180 nm CMOS,” IEEE Microw. Wirel. Components Lett., vol. 24, no. 4, pp. 269–271, 2014.
    [16] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2618, 2005.
    [17] A. Liscidini, M. Brandolini, D. Sanzogni and R. Castello, "A 0.13 μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier," in IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 981-989, April 2006.
    [18] X. Liu, M. M. Izad, L. Yao, and C. H. Heng, “A 13 pJ/bit 900 MHz QPSK/16-QAM band shaped transmitter based on injection locking and digital PA for biomedical applications,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2408–2421, 2014.
    [19] Y. H. Liu, C. L. Li, and T. H. Lin, “A 200-pJ/b MUX-based RF transmitter for implantable multichannel neural recording,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2533–2541, 2009.
    [20] J. Pandey and B. P. Otis, "A Sub-100 μW MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication," in IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1049-1058, May 2011.
    [21] M. Parvizi, K. Allidina and M. N. El-Gamal, "An Ultra-Low-Power Wideband Inductorless CMOS LNA with Tunable Active Shunt-Feedback," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1843-1853, June 2016.
    [22] B. Razavi, Design of analog CMOS integrated circuits, 1st ed. Boston, MA: McGraw-Hill, 2001.
    [23] P. Rossi, A. Liscidini, M. Brandolini, and F. Svelto, “A Variable Gain RF Front-end, based on A Voltage-Voltage Feedback LNA, For Multistandard Applications,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 690–697, 2005.
    [24] A. Salimath, P. Karamcheti and A. Halder, "A 1 V, Sub-mW CMOS LNA for Low-Power 1 GHz Wide-Band Wireless Applications," International Conference on VLSI Design and International Conference on Embedded Systems, 2014, pp. 460-465.
    [25] S. Shekhar et al., “Strong Injection Locking in Low-Q LC Oscillators: Modeling and Application in a Forwarded-Clock I/O Receiver,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 56, no. 8, pp. 1818–1829, 2009.
    [26] E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari, and E. Sanchez-Sinencio, “A 2.8-Mw sub-2-db Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12 PART 1, pp. 3154–3161, 2011.
    [27] S. B. T. Wang, A. M. Niknejad, and R. W. Brodersen, “Design of a sub-mW 960-MHz UWB CMOS LNA,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2449–2456, 2006.
    [28] S. Woo, W. Kim, C. H. Lee, H. Kim, and J. Laskar, “A Wideband Low-Power CMOS LNA With Positive-Negative Feedback For Noise, Gain, And Linearity Optimization,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3169–3178, 2012.
    [29] C. Zhai, J. Fredenburg, J. Bell, and M. P. Flynn, “An N-Path Filter Enhanced Low Phase Noise Ring VCO,” IEEE Symp. VLSI Circuits, Dig. Tech. Pap., 2014, pp. 3–4.
    [30] J. Lee and H. Wang, "Study of Subharmonically Injection-Locked PLLs," in IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
    [31] S. Diao et al., "A 50-Mb/s CMOS QPSK/O-QPSK Transmitter Employing Injection Locking for Direct Modulation," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 120-130, Jan. 2012.
    [32] FCC, First Report and Order, FCC 02-48, Feb.14, 2002
    [33] Johanson Technology, Inc., “433 MHz ISM Antenna SMD”, 0433AT62A0020 datasheet, Mar, 2016
    [34] Y. H. Chee, “Ultra Low Power Transmitters for Wireless Sensor Networks”, Ph.D. dessertation, Dept. of Electrical Engineering and Computer Sciences, Univ. of California at Berkeley, USA, 2006
    [35] Fundamentals of RF and Microwave Noise Figure Measurements, Agilent Technologies Inc. , USA, 2010
    [36] De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Agilent Technologies Inc. , USA, 2004
    [37] Improved Methods for Measuring Distortion in Broadband Devices, Agilent Technologies Inc. , USA, 2008
    [38] Agilent Technologies Inc., “E5071C ENA Network Analyzer”, 5989-5479EN datasheet, Feb, 2014
    [39] Agilent Technologies Inc., “Agilent N9010A EXA X-Series Signal Analyzer”, 5991-0373EN datasheet, May, 2012
    [40] Keysight Technologies Inc., “MXG X-Series Signal Generators N5181B Analog & N5182B Vector”, 5991-0038EN datasheet, July, 2016

    無法下載圖示 校內:2022-01-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE