| 研究生: |
蔡明哲 Tsai, Ming-Che |
|---|---|
| 論文名稱: |
登革熱病毒感染人類肝腫瘤CD133+CD61+前驅細胞 Cells with CD133+CD61+ phenotypes are highly permissive to dengue virus infection |
| 指導教授: |
彭貴春
Perng, Guey-Chuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 登革熱病毒 、肝癌 、癌幹細胞 、幹細胞 、前驅細胞 |
| 外文關鍵詞: | dengue virus, hepatoma, cancer stem cells, stem cells, progenitor cells |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類肝惡性腫瘤(Hepatocellular carcinoma, HCC)是世界上常見的疾病之一,並且每年在全世界皆有死亡案例發生。近期,癌幹細胞的理論已經被指出並且在腫瘤組織中被揭露,這些癌幹細胞具有正常幹細胞的生物特性,如自我增生再造,高度分化能力等,並且與一些幹細胞與前驅細胞相近。然而,癌幹細胞的表現形態非常多,定義癌幹細胞亦不容易。本篇研究首先利用登革熱病毒會感染人類骨髓造血幹細胞或前驅細胞的特性,藉此假設:若癌幹細胞具有與骨髓幹細胞有相同特性的話,則登革熱病毒可以藉由高度病毒專一性標的感染。本研究使用人類肝癌組織,經由獲准的IRB程序進行實驗,每項檢體由同一個病人經由醫師臨床診斷,分辨出正常肝組織與惡性腫瘤組織進行後續實驗,並使用研磨或酵素方式取得細胞懸浮液,細胞經由計算過後以1 MOI感染,並且以病毒斑測試觀察動態病毒複製的變化,以及正常與惡性腫瘤組做比較;生物特性藉由西方墨漬法觀察。在流式細胞儀分析中初步揭露在肝癌組織中的巨核前驅細胞為主要被登革熱病毒感染的標的,並且後續使用磁珠分選方式可以證實此CD133+或CD61+細胞群能支持病毒感染複製;不含有此細胞群的肝癌細胞則相對感染能力低。此外,由肝癌組織細胞感染產生之登革熱病毒也不表現病毒外殼結構,顯示此病毒感染不同於細胞株之特性。我們也許可以藉由此種方式製造出抗癌疫苗;或者新穎標靶藥物去消去惡性腫瘤細胞,達到癌症治療效果。
Human hepatocellular carcinoma (HCC) is a common disease worldwide, causing many deaths annually. Recently, the theory of cancer stem cells (CSCs) has been proposed and investigated for the presence of the CSCs in tumor/cancer tissues. The characteristics of these CSCs, such as the ability of self-renewing, capability of differentiation, and sustaining the propagation specifics similar to the conventional stem cells, entitle them to be closely related to stem/progenitor cells. However, the phenotypes of the CSCs remain at large. In this study, we took the advantages of the infectability of dengue virus (DENV) to human bone marrow (HBM) hematopoietic stem/progenitor cells. We therefore hypothesized that DENV can infect the CSCs if these cells share the phenotypes of HBM hematopoietic stem/progenitor cells. Specimens were obtained from hepatoma patients with approved IRB protocol. Each tissue was divided into tumor and normal parts based upon physiological diagnosis. Single cell suspension was prepared from tissues that were enzymatic digested of connective materials in tissues. Cell density at 1×106 cells per tube per time point was utilized for the kinetic studies, either infected with DENV at 1 MOI (multiplicity of infection) or uninfected as the control. Viral titers in the supernatant were evaluated by the plaque assay, while biological elements of cells were performed by western blot analysis. The results demonstrated that high DENV viral titers were dominantly from the cells in the tumor part, compared to that of the normal part from the same donor. FACS analysis revealed that megakaryocytic lineage cells in hepatoma tissue were the dominant cell populations targeted by DENV. Furthermore, isolation of cells with surface markers of CD133+ and/or CD61+ in hepatoma proved to be highly permissive to DENV infection, in contrast to the cells with surface markers of CD61- and CD133- which appeared not to be infectable. Biological properties of the virus produced from the supernatants of the DENV infected hepatoma cells revealed that DENV produced from infected primary hepatoma cells had no capsid protein as compared with virus derived from the DENV infected Vero cells. The cumulative results suggested that the permissive cells solely presented in tumor tissue could be the CSCs. We will expand our views to other types of cancer tissue to address if they have the same phenomena as HCC. This could pave a new avenue for anti-cancer vaccine and drug development or targeting strategies.
1 Tsai, W. L. & Chung, R. T. Viral hepatocarcinogenesis. Oncogene 29, 2309-2324, doi:10.1038/onc.2010.36 (2010).
2 Chiba, T. et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology (Baltimore, Md.) 44, 240-251, doi:10.1002/hep.21227 (2006).
3 Ghidini, M. & Braconi, C. Non-Coding RNAs in Primary Liver Cancer. Frontiers in medicine 2, 36, doi:10.3389/fmed.2015.00036 (2015).
4 Lee, Y. T. et al. Incidence of Second Primary Malignancies Following Colorectal Cancer: A Distinct Pattern of Occurrence Between Colon and Rectal Cancers and Association of Co-Morbidity with Second Primary Malignancies in a Population-Based Cohort of 98,876 Patients in Taiwan. Medicine 94, e1079, doi:10.1097/md.0000000000001079 (2015).
5 Li, Q. J., Li, X. X., Zhang, L. Y. & Zhao, L. F. Correlation between polymorphisms in the human leukocyte antigen-DQB1 alleles and hepatitis B with primary hepatocellular carcinoma. Chinese journal of hepatology 23, 270-274, doi:10.3760/cma.j.issn.1007-3418.2015.04.008 (2015).
6 Attwa, M. H. & El-Etreby, S. A. Guide for diagnosis and treatment of hepatocellular carcinoma. World journal of hepatology 7, 1632-1651, doi:10.4254/wjh.v7.i12.1632 (2015).
7 Bhat, A., Sebastiani, G. & Bhat, M. Systematic review: Preventive and therapeutic applications of metformin in liver disease. World journal of hepatology 7, 1652-1659, doi:10.4254/wjh.v7.i12.1652 (2015).
8 Duarte-Salles, T. et al. Dietary Fat, Fat Subtypes and Hepatocellular Carcinoma in a Large European Cohort. International journal of cancer. Journal international du cancer, doi:10.1002/ijc.29643 (2015).
9 Kim, R. et al. CD44 expression in patients with combined hepatocellular cholangiocarcinoma. Annals of surgical treatment and research 89, 9-16, doi:10.4174/astr.2015.89.1.9 (2015).
10 Das, S., Srikanth, M. & Kessler, J. A. Cancer stem cells and glioma. Nature clinical practice. Neurology 4, 427-435, doi:10.1038/ncpneuro0862 (2008).
11 Vockerodt, M., Cader, F. Z., Shannon-Lowe, C. & Murray, P. Epstein-Barr virus and the origin of Hodgkin lymphoma. Chinese journal of cancer 33, 591-597, doi:10.5732/cjc.014.10193 (2014).
12 Yamashita, T. et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology (Baltimore, Md.) 57, 1484-1497, doi:10.1002/hep.26168 (2013).
13 Rodenhuis-Zybert, I. A., Wilschut, J. & Smit, J. M. Dengue virus life cycle: viral and host factors modulating infectivity. Cellular and molecular life sciences : CMLS 67, 2773-2786, doi:10.1007/s00018-010-0357-z (2010).
14 Whitehorn, J. & Farrar, J. Dengue. British medical bulletin 95, 161-173, doi:10.1093/bmb/ldq019 (2010).
15 Nelson, E. R. & Bierman, H. R. DENGUE FEVER: A THROMBOCYTOPENIC DISEASE? Jama 190, 99-103 (1964).
16 Noisakran, S. et al. Infection of bone marrow cells by dengue virus in vivo. Experimental hematology 40, 250-259.e254, doi:10.1016/j.exphem.2011.11.011 (2012).
17 Clark, K. B. et al. Multiploid CD61+ cells are the pre-dominant cell lineage infected during acute dengue virus infection in bone marrow. PloS one 7, e52902, doi:10.1371/journal.pone.0052902 (2012).
18 Noisakran, S. et al. Role of CD61+ cells in thrombocytopenia of dengue patients. International journal of hematology 96, 600-610, doi:10.1007/s12185-012-1175-x (2012).
19 Lin, Y. L. et al. Infection of five human liver cell lines by dengue-2 virus. Journal of medical virology 60, 425-431 (2000).
20 Simon, A. Y., Sutherland, M. R. & Pryzdial, E. L. Dengue virus binding and replication by platelets. Blood, doi:10.1182/blood-2014-09-598029 (2015).
21 Wrammert, J. et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. Journal of virology 86, 2911-2918, doi:10.1128/jvi.06075-11 (2012).
22 Cho, Y. M., Kim, Y. S., Kang, M. J., Farrar, W. L. & Hurt, E. M. Long-term recovery of irradiated prostate cancer increases cancer stem cells. The Prostate 72, 1746-1756, doi:10.1002/pros.22527 (2012).
23 Hegde, G. V. et al. Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity. PloS one 7, e45647, doi:10.1371/journal.pone.0045647 (2012).
24 Koukourakis, M. I., Giatromanolaki, A., Tsakmaki, V., Danielidis, V. & Sivridis, E. Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head-neck cancer. British journal of cancer 106, 846-853, doi:10.1038/bjc.2012.33 (2012).
25 Ma, L. et al. Cancer stem-like cell properties are regulated by EGFR/AKT/beta-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. The FEBS journal 280, 2027-2041, doi:10.1111/febs.12226 (2013).
26 Martin-Padura, I. et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Laboratory investigation; a journal of technical methods and pathology 92, 952-966, doi:10.1038/labinvest.2012.65 (2012).
27 Morrison, R. et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of oncology 2011, 941876, doi:10.1155/2011/941876 (2011).
28 Yu, V. Y. et al. Incorporating cancer stem cells in radiation therapy treatment response modeling and the implication in glioblastoma multiforme treatment resistance. International journal of radiation oncology, biology, physics 91, 866-875, doi:10.1016/j.ijrobp.2014.12.004 (2015).
29 Green, S. & Rothman, A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current opinion in infectious diseases 19, 429-436, doi:10.1097/01.qco.0000244047.31135.fa (2006).
30 Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nature reviews. Immunology 8, 726-736, doi:10.1038/nri2395 (2008).
31 Jin, F. et al. Pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells. Cancer cell international 15, 60, doi:10.1186/s12935-015-0208-y (2015).
32 Huang, R. et al. Mitochondrial DNA Deficiency in Ovarian Cancer Cells and Cancer Stem Cell-like Properties. Anticancer research 35, 3743-3753 (2015).
33 Simmons, D. L., Satterthwaite, A. B., Tenen, D. G. & Seed, B. Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. Journal of immunology (Baltimore, Md. : 1950) 148, 267-271 (1992).
34 Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725 (2002).
35 Aye, K. S. et al. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Human pathology 45, 1221-1233, doi:10.1016/j.humpath.2014.01.022 (2014).
36 Bhatnagar, J. et al. Molecular detection and typing of dengue viruses from archived tissues of fatal cases by rt-PCR and sequencing: diagnostic and epidemiologic implications. The American journal of tropical medicine and hygiene 86, 335-340, doi:10.4269/ajtmh.2012.11-0346 (2012).
37 Perng, G. C. Role of Bone Marrow in Pathogenesis of Viral Infections. Journal of bone marrow research 1, doi:10.4172/2329-8820.1000104 (2012).
38 Karimkhani, C., Gonzalez, R. & Dellavalle, R. P. A review of novel therapies for melanoma. American journal of clinical dermatology 15, 323-337, doi:10.1007/s40257-014-0083-7 (2014).
39 Ono, M. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science signaling 7, ra63, doi:10.1126/scisignal.2005231 (2014).
40 Huang, J., Pan, C., Hu, H., Zheng, S. & Ding, L. Osteopontin-enhanced hepatic metastasis of colorectal cancer cells. PloS one 7, e47901, doi:10.1371/journal.pone.0047901 (2012).
41 Indinnimeo, M. et al. Evaluation of CD44 variant 6 expression and clinicopathological factors in pulmonary metastases from colon carcinoma. Oncology reports 10, 1875-1877 (2003).
42 Lee, J. L. et al. Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer research 67, 2089-2097, doi:10.1158/0008-5472.can-06-3625 (2007).
43 Ohata, H. et al. Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer research 72, 5101-5110, doi:10.1158/0008-5472.can-11-3812 (2012).
44 Donnelly, O., Harrington, K., Melcher, A. & Pandha, H. Live viruses to treat cancer. Journal of the Royal Society of Medicine 106, 310-314, doi:10.1177/0141076813494196 (2013).
45 Goins, W. F., Huang, S., Cohen, J. B. & Glorioso, J. C. Engineering HSV-1 vectors for gene therapy. Methods in molecular biology (Clifton, N.J.) 1144, 63-79, doi:10.1007/978-1-4939-0428-0_5 (2014).
46 Hersey, P. & Gallagher, S. Intralesional immunotherapy for melanoma. Journal of surgical oncology 109, 320-326, doi:10.1002/jso.23494 (2014).
47 Johnson, D. B., Puzanov, I. & Kelley, M. C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy, 1-9, doi:10.2217/imt.15.35 (2015).
48 Killock, D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nature reviews. Clinical oncology, doi:10.1038/nrclinonc.2015.106 (2015).
49 Stanford, M. M., Bell, J. C. & Vaha-Koskela, M. J. Novel oncolytic viruses: riding high on the next wave? Cytokine & growth factor reviews 21, 177-183, doi:10.1016/j.cytogfr.2010.02.012 (2010).
50 Melcher, A., Parato, K., Rooney, C. M. & Bell, J. C. Thunder and lightning: immunotherapy and oncolytic viruses collide. Molecular therapy : the journal of the American Society of Gene Therapy 19, 1008-1016, doi:10.1038/mt.2011.65 (2011).
51 Bourke, M. G. et al. The emerging role of viruses in the treatment of solid tumours. Cancer treatment reviews 37, 618-632, doi:10.1016/j.ctrv.2010.12.003 (2011).