| 研究生: |
侯文棋 Hou, Wen-chi |
|---|---|
| 論文名稱: |
以電漿輔助化學氣相沉積法成長氮化鎵奈米線 Growth of GaN Nanowires by Plasma-Enhanced Chemical Vapor Deposition |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 奈米線 、氮化鎵 、表面擴散 、氮電漿 |
| 外文關鍵詞: | nitrogen plasma, nanowires, Gallium nitride, surface diffusion |
| 相關次數: | 點閱:51 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵(GaN)材料是一個非常重要的寬能隙半導體材料,其重要性在於紫外光及藍光發光二極體與雷射的應用。 最近幾年,由於奈米科技的發展與受到矚目,半導體奈米線在合成、光電性質量測與元件製作上都具有相當吸引人的發展與進步,其中,氮化鎵奈米線就是一個相當重要的且被認為具有潛力的奈米線材料,在近期許多文獻中證實了氮化鎵奈米線在其獨特的一維奈米結構下具有不同於塊材的光電特性,是發展奈米光電元件的重要素材,然而,目前研究上對於奈米線的許多基本物理與化學性質仍相當缺乏,瞭解並能夠控制這些奈米材料將是發展奈米元件相當重要的基石。在本論文中,將介紹一新穎的氮化鎵奈米線成長技術並進行性質分析,對於成長的控制與機制有進一步的研究與討論。
在第一部份,介紹一個新穎的氮化鎵奈米線成長設備,其主要核心是在一個水平式爐管中加入一個介電質放電(dielectric barrier discharge)設備來產生氮氣電漿,並利用這個氮氣電漿與金屬鎵蒸汽反應形成氮化鎵奈米線。這個系統結合了電漿輔助式分子束磊晶法(plasma-assisted MBE)與傳統高溫爐管的優點,經由TEM的分析,我們發現氮化鎵奈米線成長方向是延著[10-10]方向成長,其成長機制是利用奈米尺度的金粒子當作觸媒進行氣-液-固成長(Vapor-liquid-solid, VLS)。奈米線的直徑約介於70-100nm,這個大小與頂端金觸媒的大小相當,奈米線長度可以長到數微米,經由室溫下光致發光(Photoluminescence) 研究發現,氮化鎵奈米線在355nm處有一個很強的訊號,這個位置符合一般常見的氮化鎵奈米線發光位置,並在整個光譜中沒有發現常見的缺陷相關訊號,這表示在這個材料中具有相當低的缺陷濃度,印證了我們所長的氮化鎵奈米線具有相當高的結晶品質,這個研究證明了這種形式的氮氣電漿可以取代常用的氨氣。我們也進行高度垂直(highly vertically-aligned)的氮化鎵奈米線成長研究,發現要使奈米線與單晶氮化鎵基板形成同質磊晶(homoepitaxy)介面必須控制在成核時的成長速度,在較低的成核速度下,觸媒才能與基板形成同質磊晶介面,經由TEM分析確認了奈米線的成長方向為[0001]這個磊晶方向。
在第二部份,研究針對當奈米線成長時,鎵原子經由基板表面擴散(surface diffusion)到觸媒對成長速率的影響,當在nitrogen-rich的成長環境下,我們發現靠近大範圍擴散面積的奈米線有近70%的鎵反應物是由表面擴散所提供,因此,在這種成長環境下奈米線的成長速度跟奈米線的周圍擴散面積有很大關係。當在氮電漿中加入5%的氫氣後,表面擴散現象立即消失,這是因為在這個反應溫度下,鎵會傾向與氫形成氫化物(GaHx, x=2,3),這種中間產物對基板的吸附性很差,很容易脫附,造成鎵反應物的表面擴散距離變成很短,因此,奈米線成長所需的鎵反應物只能由氣相提供。另外,當成長環境是在gallium-rich時,因為氣相所提供的鎵反應物已經超過成長所需,經由表面擴散的鎵反應物無法再增加成長速度,這時成長速度與氮的提供量有關。
最後一部份,對金觸媒在成長奈米線時的移動與消失進行討論並提出影響其消失速度的重要原因。研究中發現氣相較高的鎵分壓(Gallium partial pressure) 會明顯的加快金觸媒的消失速度,第一個原因是氣相中鎵分壓會影響觸媒中的鎵含量,在我們的研究中觸媒中鎵的含量可從1~35%,觸媒中較高的鎵含量會使觸媒在成長溫度下有較多的能量進行移動,進而提升觸媒的消失速度。另外,在較高的鎵分壓下,奈米線表面會有較多的鎵原子吸附在上面,這層吸附層會加速金原子的移動,進而加快觸媒的消失。當在很低的鎵分壓下成長,由於觸媒中的鎵含量非常低,奈米線成長機制轉變成氣-固-固(Vapor-solid-solid.VSS),這是文獻上第一次發現可以經由VSS機制成長氮化鎵奈米線,另外,在很低的鎵分壓下,可以在奈米線上發現樹枝狀的奈米線結構,證明在側壁上的金也有機會當作觸媒來成長奈米結構。
Gallium nitride (GaN) is a wide band-gap semiconductor with important applications for the development of UV/blue light emitting diode, or laser diode. Recent developments in the fabrication, measurements, and the assembly of semiconductor nanowires have initiated an exciting research field in science and technology. GaN nanowires have been regarded as a potential building block for nanoscale electronics and optoelectronic devices since they possess the unique optical and electronic properties from the one-dimensional geometry. However, there are still many essential scientific issues regarding the control over the growth, interface phenomena, and growth mechanism. Understanding and controlling the growth of nanowires play a crucial role in the further applications. In this thesis, we present the initial work on materials synthesis, characterization and controlling growth to address these important issues.
First of all, a novel fabrication method for GaN nanowires by introducing N2 plasma using dielectric barrier discharge (DBD) in a horizontal furnace is successfully developed. This system combines the advantages of plasma-assisted MBE and high temperature furnace for growing GaN nanowires. The growths of single crystal GaN nanowires along the [10-10] direction are observed to follow the vapor-liquid-solid (VLS) growth mechanism using Au as catalyst. The diameters of GaN nanowires range from 70–100 nm and their lengths are up to several micrometers. The PL spectra of the GaN nanowires consisted of mainly a strong band-to-band emission peak at 355 nm without defect-related luminescence at room temperature, indicating the high quality of nanowire crystallites. This is the first successful attempt to introduce stable DBD-type N2 plasma into a horizontal furnace system and demonstrated that the plasma can supply sufficient active nitrogen species to grow high-quality GaN nanowires. The investigations also show the growth and nucleation mechanism of highly vertically-aligned GaN nanowires on a c-plane GaN substrate. A homoepitaxy interface between nanowires and substrate are observed under the appropriate conditions. The results show that the lower growth rate during the nucleation stage is required for the homoepitaxy.
After the successful synthesis of high-quality GaN nanowires, we investigate the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in the plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The nanowires adjacent to the large surface-diffusion spacing obtain up to 70% of their incorporated gallium from surface diffusion under nitrogen-rich conditions. The growth rates of nanowires are strongly dependent on the surface-diffusion spacing under nitrogen-rich conditions. It is found that the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect under nitrogen-rich conditions. This effect is attributed to the conversion of gallium to gallium hydride at the growth temperature, which has a lower affinity for the sapphire substrate, thereby desorbing easily from the surface and reducing the diffusion length so that the gas phase reaction dominates the growth over the surface diffusion. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition with negligible contribution from surface diffusion. Compared to the nitrogen supply, the over supply of gallium reactant from gas phase results in the nitrogen species to be the rate determining reactant under the gallium-rich conditions.
In the final section of this thesis, the investigations are focused on the Au migration in the Au-assisted growth of GaN nanowires by controlling the gallium partial pressure during growth. The composition of gallium, ranging from 1 to 35 atom%, in the Au-Ga alloy seeds of the nanowires depends on the gallium partial pressures in the plasma-enhanced chemical vapor deposition system. We proposed that a higher excess energy above the melting energy of the Au-Ga seed, which is dependent on the gallium composition, will increase the instability of the top-seed and dramatically increase the detaching rate of catalyst at the growth temperature. Besides, the gallium atoms adsorbed on the sidewalls of nanowires, also dependent on the gallium partial pressures, may act as a surfactant to help the migration of Au atoms. In addition to the vapor-liquid-solid (VLS) growth process observed, the growth of GaN nanowires via the vapor-solid-solid (VSS) process is also observed and reported for the first time, with the detachment of solid Au seeds dramatically inhibited during growth. The migration of Au seed is evidenced by observing, at low gallium partial pressure, the Au-Ga nanoparticles on the sidewalls of nanowires and the catalyzed GaN nanowire branches.
1. Nakamura, Y.; Masada, A.; Ichikawa, M. Applied Physics Letters 2007, 91, (1), 013109.
2. Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. Nature 2003, 425, (6955), 274.
3. Pauzauskie, P. J.; Radenovic, A.; Trepagnier, E.; Shroff, H.; Yang, P.; Liphardt, J. Nature Materials 2006, 5, (2), 97.
4. Schmitt, A. L.; Higgins, J. M.; Jin, S. Nano Letters 2008, 8, (3), 810.
5. Chueh, Y.-L.; Hsieh, C.-H.; Chang, M.-T.; Chou, L.-J.; Lao, C. S.; Song, J. H.; Gan, J.-Y.; Wang, Z. L. Advanced Materials 2007, 19, (1), 143.
6. Appell, D. Nature 2002, 419, (6907), 553.
7. Falcaro, P.; Costacurta, S.; Malfatti, L.; Takahashi, M.; Kidchob, T.; Casula, M. F.; Piccinini, M.; Marcelli, A.; Marmiroli, B.; Amenitsch, H.; Schiavuta, P.; Innocenzi, P. Advanced Materials 2008, 20, (10), 1864.
8. Bremer, L.; Tuinier, R.; Jahromi, S. Langmuir 2009, 25, (4), 2390.
9. Bloomstein, T. M.; Marchant, M. F.; Deneault, S.; Hardy, D. E.; Rothschild, M. Optics Express 2006, 14, (14), 6434.
10. Joo, J.; Chow, B. Y.; Jacobson, J. M. Nano Letters 2006, 6, (9), 2021.
11. Raffa, V.; Vittorio, O.; Pensabene, V.; Menciassi, A.; Dario, P. IEEE Transactions on Nanobioscience 2008, 7, (1), 1.
12. http://www.nikon.com/about/technology/core/optical_u/immersion_e/index.htm
13. http://www.aph.uni-karlsruhe.de/wegener/?id=31
14. http://fibics.com/FIBBasics.html
15. http://www.nrel.gov/pv/measurements/dualbeam_sample.html
16. Nam, C. Y.; Tham, D.; Fischer, J. E. Nano Letters 2005, 5, (10), 2029.
17. Arimitsu, N.; Nakajima, A.; Kameshima, Y.; Shibayama, Y.; Ohsaki, H.; Okada, K. Materials Letters 2007, 61, (11-12), 2173.
18. Nath, M.; Parkinson, B. A. Advanced Materials 2006, 18, (14), 1865.
19. Liu, J.; Berg, J. C. Journal of Materials Chemistry 2007, 17, (41), 4430.
20. Bayer, K.; Dick, K. A.; Krinke, T. J.; Deppert, K. Journal of Nanoparticle Research 2007, 9, (6), 1211.
21. Deshler, T. Atmospheric Research 2008, 90, (2-4), 223.
22. Chen, X.; Xu, J.; Wang, R. M.; Yu, D. Advanced Materials 2003, 15, (5), 419.
23. Vlasov, I. I.; Lebedev, O. I.; Ralchenko, V. G.; Goovaerts, E.; Bertoni, G.; Van Tendeloo, G.; Konov, V. I. Advanced Materials 2007, 19, (22), 4058.
24. Hanrath, T.; Korgel, B. A. Advanced Materials 2003, 15, (5), 437.
25. Ali, A. A. Journal of Materials Processing Technology 2008, 199, (1), 193.
26. Wu, Y.; Livneh, T.; Zhang, Y. X.; Cheng, G.; Wang, J.; Tang, J.; Moskovits, M.; Stucky, G. D. Nano Letters 2004, 4, (12), 2337.
27. Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnut, J. A. Nano Letters 2007, 7, (12), 3650.
28. Ismail, A. F.; Goh, P. S.; Tee, J. C.; Sanip, S. M.; Aziz, M. Nano 2008, 3, (3), 127.
29. Wang, Z. L., Nanowires and nanobelts/ 1, Metal and semiconductor nanowires. Springer: Boston, 2003.
30. Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L.-E. Nano Letters 2006, 6, (9), 1842.
31. Dayeh, S. A.; Aplin, D. P. R.; Zhou, X.; Yu, P. K. L.; Yu, E. T.; Wang, D. Small 2007, 3, (2), 326.
32. Jiang, X.; Xiong, Q.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. Nano Letters 2007, 7, (10), 3214.
33. Huang, Y.; Duan, X.; Lieber, C. M. Small 2005, 1, (1), 142.
34. Kim, H.-M.; Cho, Y.-H.; Lee, H.; Kim, S. I.; Ryu, S. R.; Kim, D. Y.; Kang, T. W.; Chung, K. S. Nano Letters 2004, 4, (6), 1059.
35. Chin, A. H.; Vaddiraju, S.; Maslov, A. V.; Ning, C. Z.; Sunkara, M. K.; Meyyappan, M. Applied Physics Letters 2006, 88, (16), 163115.
36. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, (5523), 1897.
37. Johnson, J. C.; Choi, H.-J.; Knutsen, K. P.; Schaller, R. D.; Yang, P.; Saykally, R. J. Nat Mater 2002, 1, (2), 106.
38. Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, (6920), 241.
39. Zapien, J. A.; Jiang, Y.; Meng, X. M.; Chen, W.; Au, F. C. K.; Lifshitz, Y.; Lee, S. T. Applied Physics Letters 2004, 84, (7), 1189.
40. Qian, F.; Li, Y.; Gradecak, S.; Park, H.-G.; Dong, Y.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Nature Materials 2008, 7, (9), 701.
41. Zhang, Y.; Wang; Mascarenhas, A. Nano Letters 2007, 7, (5), 1264.
42. Kayes, B. M.; Atwater, H. A.; Lewis, N. S. Journal of Applied Physics 2005, 97, (11), 114302.
43. Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Nature 2007, 449, (7164), 885.
44. Look, D. C.; Sizelove, J. R. Applied Physics Letters 2001, 79, (8), 1133.
45. Nakamura, S., The blue laser diode. Springer: New York :, 2000.
46. Tyagi, A.; Lin, Y.-D.; Cohen, D. A.; Saito, M.; Fujito, K.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Applied Physics Express 2008, 1, (9), 0911031.
47. Yoshida, S.; Misawa, S.; Gonda, S. Applied Physics Letters 1983, 42, (5), 427.
48. Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Applied Physics Letters 1986, 48, (5), 353.
49. Nakamura, S. Japanese Journal of Applied Physics, Part 2: Letters 1991, 30, (10 A), L1705.
50. Zukauskas, A., Introduction to solid-state lighting. J. Wiley: New York :, 2002.
51. Lin, M. E.; Strite, S.; Agarwal, A.; Salvador, A.; Zhou, G. L.; Teraguchi, N.; Rockett, A.; Morkoc, H. Applied Physics Letters 1993, 62, (7), 702.
52. Namkoong, G.; Burnham, S.; Lee, K.-K.; Trybus, E.; Doolittle, W. A.; Losurdo, M.; Capezzuto, P.; Bruno, G.; Nemeth, B.; Nause, J. Applied Physics Letters 2005, 87, (18), 184104.
53. Mathis, S. K.; Romanov, A. E.; Chen, L. F.; Beltz, G. E.; Pompe, W.; Speck, J. S. Journal of Crystal Growth 2001, 231, (3), 371.
54. Dridi, Z.; Bouhafs, B.; Ruterana, P. Semiconductor Science and Technology 2003, 18, (9), 850.
55. Martin, G.; Botchkarev, A.; Rockett, A.; Morkoc, H. Applied Physics Letters 1996, 68, (18), 2541.
56. Gotz, W.; Johnson, N. M.; Chen, C.; Liu, H.; Kuo, C.; Imler, W. Applied Physics Letters 1996, 68, (22), 3144.
57. Gotz, W.; Johnson, N. M.; Walker, J.; Bour, D. P.; Amano, H.; Akasaki, I. Applied Physics Letters 1995, 67, (18), 2666.
58. Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. Japanese Journal of Applied Physics Part 2-Letters 1989, 28, (12), L2112.
59. Nakamura, S.; Iwasa, N.; Senoh, M.; Mukai, T. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1992, 31, (5A), 1258.
60. http://en.wikipedia.org/wiki/Wurtzite_(crystal_structure)
61. http://www.fuw.edu.pl/~kkorona/interest.html
62. Quay, R., Gallium Nitride Electronics. In Springer: Berlin, 2008.
63. Wagner, R. S.; Ellis, W. C. Applied Physics Letters 1964, 4, (5), 89.
64. Hu, J. T.; Odom, T. W.; Lieber, C. M. Accounts of Chemical Research 1999, 32, (5), 435.
65. Cheyssac, P.; Sacilotti, M.; Patriarche, G. Journal of Applied Physics 2006, 100, (4), 044315.
66. Wu, Y.; Yang, P. Journal of the American Chemical Society 2001, 123, (13), 3165.
67. Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Advanced Materials 2003, 15, (7-8), 635.
68. Li, J.; Zhang, Q.; Peng, H.; Everitt, H. O.; Qin, L.; Liu, J. Journal of Physical Chemistry C 2009, 113, (10), 3950.
69. Kim, H. M.; Kim, D. S.; Kim, D. Y.; Kang, T. W.; Cho, Y. H.; Chung, K. S. Applied Physics Letters 2002, 81, (12), 2193.
70. Hu, P. A.; Liu, Y.; Fu, L.; Cao, L.; Zhu, D. Journal of Physical Chemistry B 2004, 108, (3), 936.
71. Wu, R.; Li, B.; Gao, M.; Chen, J.; Zhu, Q.; Pan, Y. Nanotechnology 2008, 19, (33), 335602.
72. Hsu, C. L.; Hong, F. C.-N. (Unpublished results).
73. Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Advanced Materials 2003, 15, (10), 780.
74. Xu, X.-J.; Fei, G.-T.; Yu, W.-H.; Wang, X.-W.; Chen, L.; Zhang, L.-D. Nanotechnology 2006, 17, (2), 426.
75. Liu, L.; Lee, W.; Huang, Z.; Scholz, R.; Gosele, U. Nanotechnology 2008, 19, (33), 335604.
76. Cheng, Y.-H.; Cheng, S.-Y. Nanotechnology 2004, 15, (1), 171.
77. Qu, M.; Zhao, G.; Wang, Q.; Cao, X.; Zhang, J. Nanotechnology 2008, 19, (5), 055707.
78. Li, X. H.; Liu, W. M.; Li, H. L. Applied Physics A: Materials Science and Processing 2005, 80, (2), 317.
79. Yi, J. B.; Pan, H.; Lin, J. Y.; Ding, J.; Feng, Y. P.; Thongmee, S.; Liu, T.; Gong, H.; Wang, L. Advanced Materials 2008, 20, (6), 1170.
80. Zhang, H.; Ma, X.; Xu, J.; Niu, J.; Sha, J.; Yang, D. Journal of Crystal Growth 2002, 246, (1-2), 108.
81. Wang, Z.; Chen, M.; Li, H.-L. Materials Science and Engineering A 2002, 328, (1), 33.
82. Hou, W.-C.; Hong, F. C.-N. (Unpublished results).
83. http://people.physics.tamu.edu/zye/nanowire.htm
84. http://npl.postech.ac.kr/?mid=Nanopatterning
85. Bai, S.-N.; Tseng, T.-Y. Journal of Materials Science: Materials in Electronics 2009, 20, (7), 604.
86. Heath, J. R.; LeGoues, F. K. Chemical Physics Letters 1993, 208, (3-4), 263.
87. Kuo, M. L.; Hong, F. C.-N. (Unpublished results).
88. Trentler, T. J.; Goel, S. C.; Hickman, K. M.; Viano, A. M.; Chiang, M. Y.; Beatty, A. M. Journal of the American Chemical Society 1997, 119, (9), 2172.
89. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Science 2000, 287, (5457), 1471.
90. Petkov, N.; Birjukovs, P.; Phelan, R.; Morris, M. A.; Erts, D.; Holmes, J. D. Chemistry of Materials 2008, 20, (5), 1902.
91. Gibalov, V. I.; Pietsch, G. J. Journal of Physics D: Applied Physics 2000, 33, (20), 2618.
92. Choa, F. S.; Fan, J. Y.; Liu, P.-L.; Sipior, J.; Rao, G.; Carter, G. M.; Chen, Y. J. Applied Physics Letters 1996, 69, (24), 3668.
93. Ponce, F. A.; Bour, D. P. Nature 1997, 386, (6623), 351.
94. Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Sugimoto, Y.; Kiyoku, H. Japanese Journal of Applied Physics Part 2-Letters 1997, 36, (8B), L1059.
95. Kumakura, K.; Makimoto, T. Applied Physics Letters 2009, 94, (10), 103502.
96. Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Nature Materials 2002, 1, (2), 106.
97. Kim, H. M.; Kang, T. W.; Chung, K. S. Advanced Materials 2003, 15, (7-8), 567.
98. Huang, Y.; Duan, X.; Cui, Y.; Lieber, C. M. Nano Letters 2002, 2, (2), 101.
99. Han, W. Q.; Fan, S. S.; Li, Q. Q.; Hu, Y. D. Science 1997, 277, (5330), 1287.
100. Cheng, G. S.; Zhang, L. D.; Zhu, Y.; Fei, G. T.; Li, L.; Mo, C. M.; Mao, Y. Q. Applied Physics Letters 1999, 75, (16), 2455.
101. Duan, X.; Lieber, C. M. Journal of the American Chemical Society 2000, 122, (1), 188.
102. Chen, C. C.; Yeh, C. C. Advanced Materials 2000, 12, (10), 738.
103. Kim, H. M.; Kim, D. S.; Park, Y. S.; Kim, D. Y.; Kang, T. W.; Chung, K. S. Advanced Materials 2002, 14, (13-14), 991.
104. Kuykendall, T.; Pauzauskie, P.; Lee, S.; Zhang, Y.; Goldberger, J.; Yang, P. Nano Letters 2003, 3, (8), 1063.
105. Xue, C. S.; Wei, Q. Q.; Sun, Z. C.; Dong, Z. H.; Sun, H. B.; Shi, L. W. Nanotechnology 2004, 15, (7), 724.
106. Ristic, J.; Calleja, E.; Sanchez-Garcia, M. A.; Ulloa, J. M.; Sanchez-Paramo, J.; Calleja, J. M.; Jahn, U.; Trampert, A.; Ploog, K. H. Physical Review B 2003, 68, (12), 125305.
107. Hadis, M., Handbook of nitride semiconductors and devices. John Wiley: 2008.
108. Tran, N. H.; Lamb, R. N.; Lai, L. J.; Yang, Y. W. Journal of Physical Chemistry B 2005, 109, (39), 18348.
109. Properties, processing and applications of gallium nitride and related semiconductors. INSPEC: London :, 1999.
110. Neugebauer, J.; Vandewalle, C. G. Physical Review Letters 1995, 75, (24), 4452.
111. Lee, K.-H.; Chen, I.-G. Journal of the Electrochemical Society 2009, 156, (4), K59.
112. Calarco, R.; Meijers, R. J.; Debnath, R. K.; Stoica, T.; Sutter, E.; Luth, H. Nano Letters 2007, 7, (8), 2248.
113. Azuhata, T.; Sota, T.; Suzuki, K.; Nakamura, S. Journal of Physics-Condensed Matter 1995, 7, (10), L129.
114. Campbell, I. H.; Fauchet, P. M. Solid State Communications 1986, 58, (10), 739.
115. Liu, H.-L.; Chen, C.-C.; Chia, C.-T.; Yeh, C.-C.; Chen, C.-H.; Yu, M.-Y.; Keller, S.; DenBaars, S. P. Chemical Physics Letters 2001, 345, (3-4), 245.
116. Li, Q. M.; Creighton, J. R.; Wang, G. T. Journal of Crystal Growth 2008, 310, (16), 3706.
117. Deb, P.; Kim, H.; Rawat, V.; Oliver, M.; Kim, S.; Marshall, M.; Stach, E.; Sands, T. Nano Letters 2005, 5, (9), 1847.
118. Liu, B.; Bando, Y.; Tang, C.; Xu, F.; Golberg, D. Applied Physics Letters 2005, 87, (7), 073106.
119. Wang, G. T.; Talin, A. A.; Werder, D. J.; Creighton, J. R.; Lai, E.; Anderson, R. J.; Arslan, I. Nanotechnology 2006, 17, (23), 5773.
120. Li, Q.; Wang, G. T. Applied Physics Letters 2008, 93, (4), 043119.
121. Lin, C. T.; Yu, G. H.; Wang, X. Z.; Cao, M. X.; Lu, H. F.; Gong, H.; Qi, M.; Li, A. Z. Journal of Physical Chemistry C 2008, 112, (48), 18821.
122. Jensen, L. E.; Bjork, M. T.; Jeppesen, S.; Persson, A. I.; Ohlsson, B. J.; Samuelson, L. Nano Letters 2004, 4, (10), 1961.
123. Persson, A. I.; Froberg, L. E.; Jeppesen, S.; Bjork, M. T.; Samuelson, L. Journal of Applied Physics 2007, 101, (3), 034313.
124. Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Paladugu, M.; Zou, J.; Suvorova, A. A. Nano Letters 2006, 6, (4), 599.
125. Gordiets, B.; Ferreira, C. M.; Pinheiro, M. J.; Ricard, A. Plasma Sources Science & Technology 1998, 7, (3), 379.
126. Rebey, A.; Boufaden, T.; El Jani, B. Journal of Crystal Growth 1999, 203, (1-2), 12.
127. Kawamura, F.; Imade, M.; Yoshimura, M.; Mori, Y.; Sasaki, T. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2005, 44, (1-7), L1.
128. She, J. C.; Zhao, K.; Deng, S. Z.; Chen, J.; Xu, N. S. Applied Physics Letters 2005, 87, (5), 052105.
129. Persson, A. I.; Larsson, M. W.; Stenstrom, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Nature Materials 2004, 3, (10), 677.
130. Dick, K. A.; Deppert, K.; Martensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Nano Letters 2005, 5, (4), 761.
131. Campos, L. C.; Tonezzer, M.; Ferlauto, A. S.; Grillo, V.; Magalhaes-Paniago, R.; Oliveira, S.; Ladeira, L. O.; Lacerda, R. G. Advanced Materials 2008, 20, (8), 1499.
132. Kang, K.; Kim, D. A.; Lee, H. S.; Kim, C. J.; Yang, J. E.; Jo, M. H. Advanced Materials 2008, 20, (24), 4684.
133. Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Science 2007, 316, (5825), 729.
134. Wang, Y. W.; Schmidt, V.; Senz, S.; Gosele, U. Nature Nanotechnology 2006, 1, (3), 186.
135. Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. Nature 2006, 440, (7080), 69.
136. Kodambaka, S.; Hannon, J. B.; Tromp, R. M.; Ross, F. M. Nano Letters 2006, 6, (6), 1292.
137. Kawashima, T.; Mizutani, T.; Nakagawa, T.; Torii, H.; Saitoh, T.; Komori, K.; Fujii, M. Nano Letters 2008, 8, (1), 362.
138. Den Hertog, M. I.; Rouviere, J.-L.; Dhalluin, F.; Desre?, P. J.; Gentile, P.; Ferret, P.; Oehler, F.; Baron, T. Nano Letters 2008, 8, (5), 1544.
139. Dick, K. A.; Deppert, K.; Samuelson, L.; Wallenberg, L. R.; Ross, F. M. Nano Letters 2008, 8, (11), 4087.
140. Alcock, C. B.; Itkin, V. P.; Horrigan, M. K. Canadian Metallurgical Quarterly 1984, 23, (3), 309.
141. Massalski, T. B.; Murray, J. L.; Bennett, L. H.; Baker, H., Binary Alloy Phase Diagrams 2nd edn. American Society for Metals, Metals Park: Ohio, 1986; Vol. 1.
142. Kuo, C. K.; Hsu, C. W.; Wu, C. T.; Lan, Z. H.; Mou, C. Y.; Chen, C. C.; Yang, Y. J.; Chen, L. C.; Chen, K. H. Nanotechnology 2006, 17, (11), S332.
143. Neugebauer, J.; Zywietz, T. K.; Scheffler, M.; Northrup, J. E.; Chen, H.; Feenstra, R. M. Physical Review Letters 2003, 90, (5), 056101.