簡易檢索 / 詳目顯示

研究生: 楊紫晴
Yang, Tzu-Ching
論文名稱: 以供水能力分析供水水庫未來前置時期之缺水機率及缺水量機率分布
Future Lead-time Water-shortage Probability and Distribution of a Water-supply Reservoir Using Water Availability
指導教授: 蕭政宗
Shiau, Jenq-Tzong
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 缺水機率缺水量機率分布水庫可供水量入流量機率分布
外文關鍵詞: Water-shortage probability, Water-shortage probability distribution, Water availability, Inflow probability distribution
相關次數: 點閱:87下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區位處熱帶與亞熱帶之間,平均年降雨量豐沛,但由於降雨時空分布不均以及地形因素,導致台灣本島河川乾濕季分明、且水資源僅有短暫時間停留地表,難以被有效利用。因此,為提供穩定水源,台灣地區以興建水庫之方式蓄存河川豐水期流量以供枯水期使用,然而由於乾旱、水庫淤積、城市發展等各種因素,導致水庫供水有時無法完全滿足需求量。因此本論文首先以水庫歷史入流量資料建立入流量機率分布,並加上蓄水量定義為水庫可供水量的機率分布,透過比較其與計畫需水量之間關係,即可逐旬推導供水水庫未來前置時期之缺水機率以及缺水量機率分布。本論文以台灣南部區域的南化水庫以及甲仙攔河堰系統為例,探討所提出之方法應用於實際水庫之情形。研究結果顯示南化水庫於各旬不同前置時期的缺水狀況呈現明顯差異,當具有相同起始有效蓄水量時,枯水期月份(11月至4月)的缺水機率較高;而豐水期月份(5至10月)的缺水機率較低。於相同前置時期時,缺水機率隨著起始有效蓄水量之增加而逐漸降低,且缺水量分布於較小範圍內,意即當起始有效蓄水量較高時,發生缺水之機率不高且缺水量機率分布集中於小幅缺水量處。本論文所得之研究結果可初步提供水庫營運單位預判供水水庫未來發生缺水之機率,期望未來可作為水庫缺水風險以及水庫即時操作之參考。

    Although Taiwan receives plenty of rainfall normally, water shortages frequently threaten Taiwan due to unevenly spatio-temporal rainfall distribution. Reservoirs are the most important and efficient facilities for providing stable water supplies in Taiwan. The main aim of this study is to theoretically derive future lead-time water-shortage probability and probability distribution for a water-supply reservoir. This study uses water availability, defined as the sum of the useful storage and inflow, to represent water-supply capability of a water-supply reservoir. Water shortages are determined by comparing the relationship between water availability and demand. Inflows during the future lead times are unknown in advance, but distributions of inflows can be estimated from the historical data. The probability distribution of water availability is then constructed by convolution. Comparing probability distribution of water availability and demands, the water-shortage probability and distribution are constructed theoretically. The Nanhua Reservoir and the Chiahsien Weir located in southern Taiwan is used as an example to illustrate the proposed methodology. The results indicate that the water-shortage probability is high during the dry season (November to April) in Taiwan. In contrast, low water-shortage probability is observed during the wet season (May to October). The water-shortage probability decreases with increasing useful storage. The results of this study provide useful information for real-time reservoir operation.

    摘要 i 誌謝 xii 目錄 xiii 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 論文架構 2 第二章 文獻回顧 4 2-1 水庫營運策略之供水能力 4 2-2 水庫缺水機率及缺水量分布 5 2-3 區域性缺水風險 5 第三章 研究方法 7 3-1 供水水庫缺水量之定義 7 3-1-1 水庫供水能力 7 3-1-2 缺水量 7 3-2 不同前置時期缺水機率與缺水量機率分布 8 3-2-1 前置時期 8 3-2-2 t時刻(前置時期為1)缺水機率及缺水量機率分布 9 3-2-3 t+1時刻(前置時期為2)缺水機率及缺水量機率分布 11 3-2-4 t+2時刻(前置時期為3)缺水機率及缺水量機率分布 16 3-2-5 t+k-1時刻(前置時期為k)缺水機率及缺水量機率分布 23 3-3 水庫可供水量機率分布推導 25 第四章 研究地區與使用資料 26 4-1 系統營運概述 26 4-1-1 南化水庫 26 4-1-2 甲仙攔河堰 28 4-2 系統營運資料 28 第五章 結果與討論 35 5-1 南化水庫總入流量機率分布 35 5-2 不同前置時期不同起始有效蓄水量之缺水機率 42 5-3 南化水庫缺水量機率分布 45 5-3-1 不同前置時期於相同起始有效蓄水量之缺水量機率分布 45 5-3-2 相同前置時期於不同起始有效蓄水量之缺水量機率分布 47 5-4 不同計畫需水量之缺水討論 50 5-4-1 缺水機率 50 5-4-2 缺水量機率分布 52 第六章 結論與建議 55 6-1 結論 55 6-2 建議 56 參考文獻 57 附錄A 後堀溪、旗山溪流量機率分布 60 A-1 適合度檢定 60 A-2 最小AIC (Akaike information criterion)值 61 A-3 後堀溪、旗山溪流量最適機率分布 61 附錄B 南化水庫各旬缺水機率 72

    1. Bijl, D. L., Biemans, H., Bogaart, P. W., Dekker, S. C., Doelman, J. C., Stehfest, E., & van Vuuren, D. P., A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms, Water Resources Research, 54, 5803–5824, 2018
    2. Huang, W.C., Yuan, L.C., A drought early warning system on real-time multireservoir operations, Water Resources Research, 40(6), W06401, 2004
    3. Jin, Y., Lee, S., Comparative effectiveness of reservoir operation applying hedging rules based on available water and beginning storage to cope with droughts. Water Resources Management, 33(5), 2019
    4. Neelakantan, T.R., Pundarikanthan, N.V., Hedging rule optimization for water supply reservoir system, Water Resources Management, 13(6), 409−426, 1999
    5. Qian, L., Wang, H., Deng, C., An improved method for predicting water shortage risk in the case of insufficient data and its application in Tianjin, China, Journal of Earth System Science, 129(1), 48, 2020
    6. Qian, L., Wang, H., Zhang, K., Evalution criteria and model for risk between water supply and water demand and its application in Beijing, Water Resources Management, 28(13), 4433-4447, 2014
    7. Qian, L., Zhang, R., Hong, M., Wang, H., Yang, L., A new multiple integral model for water shortage risk assessment and its application in Beijing, China, Natural Hazards, 80(1), 43−67, 2016
    8. Romano, E., Guyennon, N., Del Bon, A., Petrangeli, A.B., Preziosi, E., Robust method to quantify the risk of shortage for water supply systems, Journal of Hydrologic Engineering, 22(8), 04017021, 2017
    9. Shiau, J.T., Hsiao, Y.Y., Water-deficit-based drought risk assessment in Taiwan, Natural Hazards, 64(1), 237-253, 2012
    10. Shiau, J.T., Lee, H.C., Derivation of optimal hedging rules for a water-supply reservoir through compromise programming, Water Resources Management, 19(2), 111−132, 2005
    11. Shih, J.S., ReVelle, C.,Water-supply operations during drought: Continuous hedging rule, Journal of Water Resources Planning and Management 120(5), 613−629, 1994
    12. Srinivasan, K., Philipose, M.C., Effect of hedging on over-year reservoir performance, Water Resources Management, 12(2), 95−120, 1998
    13. Taghian, M., Rosbjerg, D., Haghighi, A., Madsen, H., Optimization of conventional rule curves coupled with hedging rules for reservoir operation, Journal of Water Resources Planning and Management, 140(5), 693−698, 2014
    14. Tatano, H., Okada, N., Kawai, H., Optimal operation model of a single reservoir with drought duration explicitly concerned. Stochastic Hydrology and Hydraulics, 6(2), 123−134, 1992
    15. Tu, M.Y., Hsu, N.S., Yeh, W.W.G.,Optimization of reservoir management and operation with hedging rules, Journal of Water Resources Planning and Management 129(2), 86−97, 2003
    16. Wan, H., Zhao, J., Lund, J.R., Zhao, T., Optimal hedging rule for reservoir refill, Journal of Water Resources Planning and Management 142(11), 04016051, 2014
    17. You, J., Cai, X., Determining forecast and decision horizons for reservoir operations under hedging policies, Water Resources Research, 44(11), W11430, doi:10.1029/2008WR006978, 2008
    18. Yu, P.S., Yang, T.C., Kuo, C.M., Wang, Y.T., A stochastic approach for seasonal water-shortage probability forecasting based on seasonal weather outlook, Water Resources Management, 28(12), 3905−3920, 2014
    19. Zhang, Q., Liang, X., Fang, Z., Jiang, T., Wang, Y., Wang, L., Urban water resources allocation and shortage risk mapping with support vector machine method, Natural Hazards, 81(2), 1209-1228, 2016
    20. 台灣自來水股份有限公司,台灣自來水事業統計年報(105年),2017
    21. 經濟部水利署,中華民國108年水利統計,2020
    22. 經濟部水利署,甲仙攔河堰水庫運用要點,2011
    23. 經濟部水利署,南化水庫運用要點,2011
    24. 經濟部水利署水利規劃試驗所,台南大湖水資源開發調查試驗及推動策略研析,2014
    25. 經濟部水利署水利規劃試驗所,因應氣候變遷水源設施乾旱供水風險評估,2018
    26. 經濟部水利署水利規劃試驗所,烏山嶺第2隧道配合曾文越引計畫供水策略研究,2009
    27. 經濟部水利署水利規劃試驗所,台南大湖環境調查與工程規劃檢討,2017
    28. 經濟部水利署南區水資源局,曾文水庫越域引水工程計畫—輸水工程可行性規劃成果檢討及設計—水源運用方式檢討報告,2006

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE