簡易檢索 / 詳目顯示

研究生: 楊仁華
Yang, Ren-Hua
論文名稱: 邊界積分方程式法使用輔助內部面法對二維時聲音的輻射和散射
指導教授: 楊世安
Yang, Shih-An
學位類別: 碩士
Master
系所名稱: 工學院 - 造船及船舶機械工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 69
中文關鍵詞: 邊界積分方程式法非奇異核聲音的輻射和散射
外文關鍵詞: acoustic radiation and scattering, boundary integral equation method, nonsingular kernel
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是針對二維的聲音輻射(acoustic radiation)和散射(scattering)場提供一個有效的解決方法。虛構的特徵頻率的困難能由合併滿足在物體表面內的某些邊界條件的輔助內部面來克服。而此過程將可導出一套獨特地可解決的邊界積分方程式。分佈有未知強度的單聲源(monopoles)在物體和內部表面產生一個簡單源公式。修飾的邊界積分方程式能進一步轉換成常積分方程式,即只包含非奇異核(nonsingular kernels) 。這個成就允許直接的應用標準求積分公式在整個積分區域,也就是排列點恰好在積分點。內部表面的選擇並不困難,此外,只有少許符合的內部節點對計算的結果來說已是足夠的。數值的計算由聲學上全硬的橢圓柱和長方柱組合聲音的輻射和散射。對照解析解,數值結果證明這個解決方法的效率和正確性。

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones, i.e. containing nonsingular kernels only. This implementation allows directly applying standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task; moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

    ABSTRACT 摘要 誌謝 目錄 圖目錄 符號說明 第一章 緒論 1-1研究動機 1-2文獻回顧 第二章 積分方程式公式 2-1基本方程式推導 2-2 輻射問題的積分方程式 2-3 散射問題的 積分方程式 第三章常積分方程式公式 3-1 輻射問題的常積分方程式 3-2 散射問題的常積分方程式 第四章數值實例 4-1 輻射問題的數值實例 4-2 散射問題的數值實例 第五章結論 參考文獻 附錄A 附錄B 附錄C 附錄D 附錄E

    1. H. A. Schenck, “Improved integral formulation for acoustic radiation problem,” J. Acoust. Soc. Am. 44, 41-58
    2. J. Burton and G. F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary value problem,” Proc. R. Soc. London, Ser. A 323, 201-210 (1971)
    3. S. A. Yang, “A boundary integral equation method for two-dimensional acoustic scattering problems,” J. Acoust. Soc. Am. 105, 93-105 (1999).
    4. S. A. Yang, “Evaluation of 2-D Green’s boundary formula and its normal derivative using Legendre polynomials, with an application to acoustic scattering problems,” Int. J. Num. Meth. Eng. (2001).
    5. V. D. Kupradze, Fundamental Problems in the Mathematical Theory of Diffractions, translated by C. D. Benster, NSB Rep. No. 2008 (1952).
    6. L. H. Chen and D. G. Schweikert, “Sound radiation from an arbitrary body,” J. Acoust. Soc. Am. 35, 1626-1632 (1963).
    7. G. H. Koopmann, L. Song, and J. B. Fahnine, “A method for computing acoustic fields based on the principle of wave superposition,” J. Acoust. Soc. Am. 86, 2433-2438 (1989).
    8. R. Jeans and I. C. Mathews, “The wave superposition method as a robust technique for computing acoustic fields,” J. Acoust. Soc. Am. 92, 1156-1166 (1992).
    9. D. T. Wilton, I. C. Mathews, and R. A. Jeans, “A clarification of
    nonexistence problems with superposition method,” J. Acoust. Soc. Am. 94, 1676-1680 (1993).
    10. R. D. Miller, E. T. Moyer, Jr.,H. Huang, and H.Uberall, ”A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells,” J. Acoust. Soc. Am. 89, 2185-2196 (1991).
    11. P. A. Krutitskii, “A new approach to reduction of the Neumann problem in acoustic scattering to a non-hypersingular integral equation,” IMA J. Appl. Math. 64, 259-269 (2000).
    12. M. A. Jaswon and G. T. Symm, Integral Equation Methods in potential Theory and Elastostatics (Academic Press, London, 1977).
    13. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (John Wiley& Sons, New York, 1983).
    14. V. I. Smirnov, A Course of Higher Mathematics (Pergamon, Oxford, 1964), Vol. IV.
    15. I. G. Petrovsky, Lectures on Partial Differential Equations (Interscience, New York, 1954).
    16. J. Van Bladel, Electromagnetic Fields (McGraw-Hill, New York, 1964).
    17. Electromagnetic and Acoustic Scattering by Simple Shapes, edited by J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi (Hemisphere, New York, 1987).
    18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
    19. K. K. Mei and J. G. Van Bladel, “Scattering by perfectly-conducting rectangular cylinders,” IEEE Trans. Antennas and Propagation 11, 185-192 (1963).
    20. K. Kobayashi, “Diffraction of a plane electromagnetic wave by a rectangular conducting rod (I)-rigorous solution by the Wiener-Hopf technique”, Bull. Facul. Sci. & Eng., Chuo University, 25, 229-261 (1982).
    21. E. Topsakal, A.Buyukaksoy , and M.Idemen , “Scattering of electromagnetic wave by a rectangular impedance cylinder,” Wave Motion 31, 273-296 (2000).
    22. S. A. Yang, “A solution method for two-dimensional potential flow about bodies with smooth surfaces by direct use of the boundary integral equation,” Commun. Num. Meth. Eng. 15, 469-478 (1999).
    23. J. Katz and A. Plotkin, Low-Speed Aerodynamics –From Wing Theory to Panel Methods (McGraw-Hill, New York, 1991).
    24. W. Benthien and H. A. Schenck, “Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics,” Comput. Struct. 65, 295-305 (1997).
    25. S. A. Yang, “Acoustic scattering by a hard or soft body across a wide frequency range by the Helmholtz integral equation method,” J. Acoust. Soc. Am. 102, 2511-2520 (1997).

    下載圖示 校內:立即公開
    校外:2002-07-09公開
    QR CODE