簡易檢索 / 詳目顯示

研究生: 宋志龍
Sung, Chih-Lung
論文名稱: 應用基因演算法於特用化學品工廠排程之研究
Research on Genetic Algorithm applied on Scheduling of Specialty Chemical Plant
指導教授: 蔡長鈞
Tsai, Chang-Chun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 58
中文關鍵詞: 基因演算法總完成時間特用化學品平行機台生產排程
外文關鍵詞: Genetic Algorithm, Makespan, Specialty Chemicals, Parallel Machine, Production Scheduling
相關次數: 點閱:92下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 特用化學品(Specialty Chemicals)生產為批次生產,隨著產能的增加反應槽的建構成本將成比例增加。如何將訂單有效切割以求取反應槽最大運用效益將成為重要的課題。針對特用化學品生產排程的研究尚不多見,因此本研究將平行機台(Parallel Machine)的概念應用於特用化學品的生產排程(Production Scheduling)。本研究以各反應槽的產品生產順序為基因碼,總完成時間(Makespan)為目標函數並運用基因演算法(Genetic Algorithm)來求其近似最佳解。
    本研究結果與傳統派工方式-最早到期日優先派工法則(EDD)比較其求解品質。在大量排程,總完成時間可有效降低13個單位時間;在小量排程,總完成時間可有效降低21個單位時間,由此可證,本研究方法確實有其求解效果。本研究使用MATLAB軟體撰寫程式碼,爾後可依實際狀況修正並能實際應用於工廠。因此本研究提出的方法在實務上能夠有效地協助管理者執行排程相關之作業,且具有實際應用的價值。

    Batch production technique is applied to the production of specialty chemicals. As the capacity increasing, the construction cost of reactors will be added proportionably. How to divide up orders efficiently to gain the greatest use of reactors will be an important issue. There is few research about the idea of parallel machine used in the production scheduling of specialty chemicals so far;therefore, this research will be applied on the production scheduling of specialty chemicals with the concept of parallel machine.At this point, this research use the genetic algorithm to evaluate the approximate best value with the product sequence of reactors as genes and Makespan as objective function.
    After comparing the traditional dispatching method, earliest due date (EDD), with the result of this research, it shows that, in makespan, 13 units of time span reduced effectively in terms of big quantity of production scheduling, and 21 units of time span lowered in terms of small quantity. Thus it can be seen that this research method does obtain the greatest outcome of its application in specialty chemicals production. And then the method of research applied by program code written by MATLAB can be revised according to actual situation and also put it into practice in the plant. Consequently, the method of this research can assist the managers to make related production scheduling efficiently and have practical application value.

    摘要..................................................................................................................i 致謝................................................................................................................iii 論文目錄........................................................................................................iv 表目錄...........................................................................................................vii 圖目錄............................................................................................................ix 第一章 緒論....................................................................................................1 第一節 研究背景與動機................................................................................1 第二節 研究目的............................................................................................2 第三節 研究假設與限制................................................................................3 第四節 研究架構與大綱................................................................................3 第二章 文獻探討............................................................................................6 第一節 特用化學品工廠簡介與排程特性....................................................6 第二節 派工法則與平行機台排程................................................................8 第三節 基因演算法......................................................................................14 2.3.1 基因演算法之特點...............................................................................14 2.3.2 基因演算法之步驟...............................................................................16 第三章 研究方法..........................................................................................27 第一節 問題描述..........................................................................................27 3.1.1特用化學品工廠製程與設備簡介.......................................................27 3.1.2特用化學品工廠生產程序...................................................................28 3.1.3問題定義...............................................................................................29 第二節 模式建置.........................................................................................30 3.2.1符號定義...............................................................................................30 3.2.2數學模式...............................................................................................31 第三節 基因演算法.....................................................................................32 第四章 實證研究與分析.............................................................................38 第一節 案例描述.........................................................................................38 第二節 基因演算法之求解測試-小量排程................................................39 4.2.1實作環境介紹.......................................................................................39 4.2.2窮舉法與EDD法求解結果-小量排程..................................................39 4.2.3以實驗設計法進行基因演算法求取最佳解-小量排程......................41 第三節 基因演算法之求解測試-大量排程................................................44 4.3.1 EDD法求解結果-大量排程.................................................................44 4.3.2以實驗設計法進行基因演算法求取最佳解-大量排程......................45 第五章 結論與建議.....................................................................................50 第一節 成果與結論.....................................................................................50 第二節 未來研究方向與建議.....................................................................51 參考文獻......................................................................................................53

    [1]張百棧、謝日章與蕭陳鴻。“基因演算法於非等效平行機台排程之應用” Journal of the Chinese Institute of Industrial Engineers, 19(2), 79-95, 2002。

    [2]經濟部。2005特用化學品工業年鑑(編號:ITRIEK-0453-T411)。台北市:
    洪世淇, 2005。

    [3]Balasubramanian, H., Mönch, L., Fowler, J., and Pfund, M., “Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness.” International Journal of Production Research, 42(8), 1621-1638, 2004.

    [4]Beasley, J. E., and Chu, P. C. , “A genetic algorithm for the set overing problem.” European Journal of Operational Research, 94, 392-404, 1996.

    [5]Bo, Z. W., Hua, L. Z., and Yu, Z. G., “Optimization of process route by genetic algorithms.“ Robotics and Computer-Integrated Manufacturing, 22,
    180-188, 2006.

    [6]Cao, D., Chen, M. Y., and Wan, G. H., “Parallel machine selection and job scheduling to minimize machine cost and job tardiness.” COMPUTERS & OPERATIONS RESEARCH, 32(8), 1995-2012, 2005.

    [7]Chan, K. Y., Aydin, M. E., and Fogarty, T. C., “Main effect fine-tuning of the mutation operator and the neighbourhood function for uncapacitated facility location problems.” Soft Computing - A Fusion of Foundations, Methodologies and Applications, 10, 1075-1090, 2006.

    [8]Chen, B., Ye, Y. Y., and Zhang, J. W., “Lot-sizing scheduling with batch setup times.” JOURNAL OF SCHEDULING, 9(3), 299-310, 2006.

    [9]Chen, J. F., “Unrelated parallel machine scheduling with secondary resource constraints.” INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 26(3), 285-292, 2005.

    [10]Chen, R. S., Lu, K. Y., and Yu, S. C., ”A hybrid genetic algorithm approach on multi-objective of assembly planning problem.” Engineering Applications of Artificial Intelligence , 15, 447-457, 2002.

    [11]Davis, L., “Handbook on Genetic Algorithms.” New York : Van Nostrand Reinhold, 1991.

    [12]Deris, S., Omatu, S., Ohta, H., Shaharudin, K. L. C., and Samat, P.A., “Ship maintenance scheduling by genetic algorithm and constraint-based reasoning. “ European Journal of Operational Research, 112, 489-502, 1999.

    [13]Dessouky, M. M., and Kijowski, B. A., “Production scheduling of single-stage multi-product batch chemical processes with fixed batch sizes.” IIE Transactions, 29(5), 399–408, 1997.

    [14]Fishwick, R. J., Liu X. L., and Begg, D. W., “Adaptive search in discrete limit analysis problems.” Computer Methods in Applied Mechanics and Engineering, 189, 931-942, 2000.

    [15]Gen, M., and Cheng, R., “Foundations of Genetic Algorithms, Genetic Algorithms & Engineering Design. ” New York : John Wiley & Sons, Inc, 1997.

    [16]Gen, M., and Cheng, R., “Genetic algorithm and engineering design.” New York : Wiley, 1997.

    [17]Goldberg, D., ”Genetic algorithms in search, optimization and machine learning.” Boston : Addison-Wesly, 1989.

    [18]Goldberg, D., and Lingle, R., “Alleles, loci, and the traveling salesman problem.” Proceedings of International conference on Genetic Algorithms and TheirApplications, 154-159, 1985.

    [19]Haupt, R., “A survey of priority rule-based scheduling,” OR Spectrum, 11, 3-16, 1989.

    [20]Holland, J. H., “Adaptation in natural and artificial Systems.” Ann Arbor : University of Michigan Press, 1975.

    [21]Jayamohan, M. S., and Rajendran, C., “Development and analysis of cost-based dispatching rules for job shop scheduling” European Journal of Operational Research, 157, 307-321, 2004.

    [22]Jou, C., “A genetic algorithm with sub-indexed partitioning genes and its application to production scheduling of parallel machines.” Computers and Industrial Engineering, 48(1), 39-54, 2005.

    [23]Kim, D. W., Kim, K. H., Jang, W., and Chen, F. F., “Unrelated parallel machine scheduling with setup times using simulated annealing.” ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 18(3-4), 223-231, 2002.

    [24]Kwok, Y. K., and Ahmad, I., “Efficient scheduling of arbitrary task graphs to multiprocessors using a parallel genetic algorithm.” Journal of Parallel and
    Distributed Computing, 47, 58-77, 1997.

    [25]Leung, J. Y. T., and Pinedo, M., “Minimizing total completion time on parallel machines with deadline constraints.” SIAM JOURNAL ON COMPUTING, 32(5), 1370-1388, 2003.

    [26]Mitchell, M., “An Introduction to Genetic algorithms.” Cambridge, MA : MIT Press, 1996.

    [27]Mitchell, M., “Davis, L.D, Handbook of genetic algorithms.” Artificial Intelligence, 100, 325-330, 1998.

    [28]Mokotoff, E., “Parallel machine scheduling problems: A survey.” ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 18(2), 193-242, 2001.

    [29]Pinedo, M., “Scheduling theory, algorithm, and systems.” New Jersey :Prentice Hall, 1995.

    [30]Rippin, D. W., “The big advantage offered by batch processing is flexibility.” Chemical Engineering, 98(5), 101–107, 1991.

    [31]Tseng, H.-E. ”Guided genetic algorithms for solving a larger constraint assembly problem.” International Journal of Production Research, 44(3), 601-625, 2006.

    [32]Venkatachalam, A.R., ”An analysis of an embedded crossover scheme on a ga-hard problem.” Computers and Operations Research, 22(1), 149-157, 1995.

    [33]Van Hop, N., and Wan, G. H., “The scheduling problem of PCBs for multiple non-identical parallel machines.” EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 158(3), 577-594, 2004.

    [34]Wang, P. T., Wang, G. S., and Hu, Z. G., “Speeding up the search process of genetic algorithm by fuzzy logic.” Proceeding of the Fifth European Congress on Intelligent Techniques and Soft Computing, 665-671, 1997.

    [35]Yalaoui, F., and Chu, C. B., “Parallel machine scheduling to minimize total tardiness.” INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 76(3), 265-279, 2002.

    [36]Yun, Y. S., “Genetic algorithm with fuzzy logic controller for preemptive and non-preemptive job-shop scheduling problems.” Computers & Industrial Engineering, 43, 623-644, 2002.

    下載圖示 校內:2010-06-11公開
    校外:2012-06-11公開
    QR CODE