簡易檢索 / 詳目顯示

研究生: 邱議賢
Ciou, Yi-Sian
論文名稱: 鉛在奈米限制下的超導性質
Superconductivity of Lead under Nanoconfinement
指導教授: 田聰
Tien, Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 鉛多孔玻璃超導性臨界磁場庫柏對熱容
外文關鍵詞: Lead in porous glass, superconductivity, critical magnetic field, Cooper pairing, heat capacity
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物質掺進confined幾何結構內所表現出來的性質,與此物質的塊狀固態有根本上的不同。將鉛灌入矽酸鹽類玻璃的奈米多孔隙陣列中所展現的超導性,可由電性、磁性和熱性測量來加以研究之。鉛在多孔玻璃中可將原本純鉛塊材的臨界場大小提升約40倍。
    外加場、臨界場和各自所對應臨界溫度之間的關係遵守一經驗關係式Hc(T) = Hc(0)[1 –(T/Tc)2]。當外加磁場小於803Oe時,可從M'、M"、d(M/H)/dT、[C(H) – C(40kOe)]等物理量對溫度的關係曲線觀察到兩個突起峰。這些結果暗示了鉛多孔玻璃內有兩種不同的超導機制共存。

    Properties of materials in confined geometries can differ significantly from those of bulk samples. Superconductivity of lead in nanoporous silicate matrices was studied by electrical, magnetic and thermal measurements. The critical field of lead in porous glass is strongly enhanced nearly 40 times of magnitude larger than the thermodynamic critical field of bulk lead.
    The critical magnetic field follows the empirical relation Hc(T) = Hc(0)[1 –(T/Tc)2]. In a field lower than 803 Oe, there are two peaks in M',M", d(M/H)/dT, and C(H) – C(40kOe) measurements. These results suggest two different kinds of superconducting mechanisms coexist for lead in porous glass. This coexistence of two kinds of superconductivities is not observed in gallium and indium embedded in a porous glass.

    摘要(中英文並附)…………………………………………………………… 2 致謝…………………………………………………………………………… 3 目錄………………………………………………………………………………4 第一章 導論……………………………………………………………………6 第二章 實驗原理與儀器 2-1 製備樣品……………………………………………………… 7 2-2 實驗儀器……………………………………………………… 8 2-3 交流磁化率的實驗原理……………………………………… 10 2-4 比熱的實驗原理……………………………………………… 11 2-5 超導熱力學理論……………………………………………… 13 第三章 實驗結果與討論 3-1 電阻量測……………………………………………………… 18 3-2 交流磁性量測………………………………………………… 22 3-3 直流磁性量測………………………………………………… 30 3-4 熱容量測……………………………………………………… 43 第四章 討論………………………………………………………………… 54 第五章 結論………………………………………………………………… 58 第六章 數學方法 6-1 線性內插……………………………………………………… 59 6-2 微分法………………………………………………………… 62 參考文獻……………………………………………………………………… 64

    (1) C. Tien, J. S. Hwang, K. J. Lin, C. S. Wur, E. V. Charnaya and Yu. A. Kumzerov, Phys. Rev. B, 54, 11880 (1996)
    (2) E. V. Charnaya, C. Tien , K. J. Lin, C. S. Wur, and Yu. A. Kumzerov, Phys. Rev. B, 58, 467 (1998)
    (3) C. Tien, C. S. Wur, K. J. Lin, E. V. Charnaya, and Yu. A. Kumzerov, Phys. Rev. B 61, 14833 (2000)
    (4) Superconductivity, V. L. Ginzburg and E. A. Andryushin, 1994, World Science Publishing Co. Pre. Ltd., P O Box 128, Farrer Road, Singapore 9128.
    (5) CINDAS data series on material properties, Volume I-2, Specific Heat of Solids, Edited by C. Y. Ho, Theory of Specific Heat of Solid by A. P. Miller, 1988, Hemisphere Publication Corporation (a member of Taylor & Francis Group).
    (6) W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003)
    (7) J. Hagel, M. T. Kelemen, G. Fischer, Pilawa, J. Wosnitza, E. Dormann, H. v. Lohneysen, A. Schnepf, H. Schnockel, U. Neisel, and J. Beck, J. low temp. Phys. 129, 133 (2002).
    (8) N. J. Curro, T. Caldwell, E. D. Bauer, L. A. M. M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao, Nature (London) 434, 622 (2005).
    (9) N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).
    (10) H. Sakai, S. Kambe, Y. Tokunaga, T. Fujimoto, R. E.Walstedt, H. Yasuoka, D. Aoki, Y. Homma, E. Yamamoto, A. Nakamura, et al., Phys. Rev. B 76, 024410 (2007).
    (11) E. D. Bauer, J. D. Thompson, J. L. Sarrao, L. A.Morales, F. Wastin, J. Rebizant, J. C. Griveau, P. Javorsky, P. Boulet, E. Colineau, G. H. Lander, and G. R. Stewart, Phys. Rev. Lett. 93, 147005 (2004)
    (12) P. Javorský, E. Colineau, F. Wastin, F. Jutier, J.-C. Griveau, P. Boulet, R. Jardin, and J. Rebizant, Phys. Rev. B 75, 184501 (2007).

    下載圖示 校內:2011-08-09公開
    校外:2012-08-09公開
    QR CODE