| 研究生: |
邱議賢 Ciou, Yi-Sian |
|---|---|
| 論文名稱: |
鉛在奈米限制下的超導性質 Superconductivity of Lead under Nanoconfinement |
| 指導教授: |
田聰
Tien, Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 鉛多孔玻璃 、超導性 、臨界磁場 、庫柏對 、熱容 |
| 外文關鍵詞: | Lead in porous glass, superconductivity, critical magnetic field, Cooper pairing, heat capacity |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
物質掺進confined幾何結構內所表現出來的性質,與此物質的塊狀固態有根本上的不同。將鉛灌入矽酸鹽類玻璃的奈米多孔隙陣列中所展現的超導性,可由電性、磁性和熱性測量來加以研究之。鉛在多孔玻璃中可將原本純鉛塊材的臨界場大小提升約40倍。
外加場、臨界場和各自所對應臨界溫度之間的關係遵守一經驗關係式Hc(T) = Hc(0)[1 –(T/Tc)2]。當外加磁場小於803Oe時,可從M'、M"、d(M/H)/dT、[C(H) – C(40kOe)]等物理量對溫度的關係曲線觀察到兩個突起峰。這些結果暗示了鉛多孔玻璃內有兩種不同的超導機制共存。
Properties of materials in confined geometries can differ significantly from those of bulk samples. Superconductivity of lead in nanoporous silicate matrices was studied by electrical, magnetic and thermal measurements. The critical field of lead in porous glass is strongly enhanced nearly 40 times of magnitude larger than the thermodynamic critical field of bulk lead.
The critical magnetic field follows the empirical relation Hc(T) = Hc(0)[1 –(T/Tc)2]. In a field lower than 803 Oe, there are two peaks in M',M", d(M/H)/dT, and C(H) – C(40kOe) measurements. These results suggest two different kinds of superconducting mechanisms coexist for lead in porous glass. This coexistence of two kinds of superconductivities is not observed in gallium and indium embedded in a porous glass.
(1) C. Tien, J. S. Hwang, K. J. Lin, C. S. Wur, E. V. Charnaya and Yu. A. Kumzerov, Phys. Rev. B, 54, 11880 (1996)
(2) E. V. Charnaya, C. Tien , K. J. Lin, C. S. Wur, and Yu. A. Kumzerov, Phys. Rev. B, 58, 467 (1998)
(3) C. Tien, C. S. Wur, K. J. Lin, E. V. Charnaya, and Yu. A. Kumzerov, Phys. Rev. B 61, 14833 (2000)
(4) Superconductivity, V. L. Ginzburg and E. A. Andryushin, 1994, World Science Publishing Co. Pre. Ltd., P O Box 128, Farrer Road, Singapore 9128.
(5) CINDAS data series on material properties, Volume I-2, Specific Heat of Solids, Edited by C. Y. Ho, Theory of Specific Heat of Solid by A. P. Miller, 1988, Hemisphere Publication Corporation (a member of Taylor & Francis Group).
(6) W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B 68, 184507 (2003)
(7) J. Hagel, M. T. Kelemen, G. Fischer, Pilawa, J. Wosnitza, E. Dormann, H. v. Lohneysen, A. Schnepf, H. Schnockel, U. Neisel, and J. Beck, J. low temp. Phys. 129, 133 (2002).
(8) N. J. Curro, T. Caldwell, E. D. Bauer, L. A. M. M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao, Nature (London) 434, 622 (2005).
(9) N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998).
(10) H. Sakai, S. Kambe, Y. Tokunaga, T. Fujimoto, R. E.Walstedt, H. Yasuoka, D. Aoki, Y. Homma, E. Yamamoto, A. Nakamura, et al., Phys. Rev. B 76, 024410 (2007).
(11) E. D. Bauer, J. D. Thompson, J. L. Sarrao, L. A.Morales, F. Wastin, J. Rebizant, J. C. Griveau, P. Javorsky, P. Boulet, E. Colineau, G. H. Lander, and G. R. Stewart, Phys. Rev. Lett. 93, 147005 (2004)
(12) P. Javorský, E. Colineau, F. Wastin, F. Jutier, J.-C. Griveau, P. Boulet, R. Jardin, and J. Rebizant, Phys. Rev. B 75, 184501 (2007).