| 研究生: |
孔德閔 Kung, Te-Min |
|---|---|
| 論文名稱: |
地下水滲流機制所誘發的水下峽谷演化 Submarine canyon evolution induced by groundwater seepage flows |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 海底峽谷 、異重流 、海底地下水滲流 、大陸棚邊緣 、數位影像處理 |
| 外文關鍵詞: | Submarine canyon, Density currents, seepage, Continental margin |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究利用水下砂箱實驗,模擬海底地下水滲流於大陸邊緣所產生的形貌演化,其中我們控制:(1)流量大小、(2)覆土深度及(3)單點源與雙點源供應等變因,以探索海底峽谷在大陸邊緣出現的機制及成因。
實驗結果顯示,峽谷的出現與否須要達到兩點重要的要素:(1)滲流出的流動必須於峽谷內具有足夠的侵蝕能力;(2)海底地下水需要在坡面底部累積足夠的壓力積聚,如此才能在坡面上形成圓弧狀的峽谷頭部斷面,使得異重流集中在峽谷下切。
此外,實驗結果亦顯示侵蝕的速率會受滲流流量的大小而影響,主要反映在實驗時間長度上。再者,地下水壓力的積聚則是主要受覆土深度這項變因主導,本研究發現在定水頭異重流給的固定壓力下,每一組實驗皆會對應到一個相近的覆土深度。僅有在此覆土深度以下,地下滲流才可自坡面集中形成圓弧狀峽谷斷面並進入滲流峽谷階段。而當覆土深度過大時,坡面會傾向多點的滲出流體造成重力式的崩塌,以達到降低覆土深度的目的。最後,單點與兩點的輸入比較能反映出在各種坡面與流量的條件下,多條峽谷匯聚成單一峽谷地形的趨勢,幫助我們利用峽谷形貌去推測其地下的流體條件。
由於本研究無法獲取水下地下水在土體內實際的滲漏與流動情形,也無法實際掌握峽谷滲流中異重流的流量。使得我們在流量與侵蝕能力的的關聯比較上,有一定程度的誤差。而對水下滲流此研究題目流量的計算與地下水流模式都還未曾開發,因此未來的研究方向若能著重在流量或地下的水流模擬上,能夠使我們對峽谷的成因有更深刻的了解與認識。
關鍵詞:海底峽谷 異重流 海底地下水滲流 大陸棚邊緣 數位影像處理
In this study, we used underwater sandbox experiment to observe the morphologic evolution of the submarine groundwater seepage. We control: the flow rate, the depth of the covering sand and single point source or pair point source supply to explore the cause of submarine canyon growing.
From the experimental results, we found that the development of seepage canyon meet two conditions: (1) The seepage must have sufficient erosion ability, (2) The submarine groundwater needs to accumulate enough pressure at the bottom of the slope. Under this condition, the head of the canyon will appear and the density current will erode.
In addition, the experimental results are also reflected in the variables. First, erosion will be affected by the seepage flow rate, which is reflected in the duration of experiment. Second, we observe that each run will connect with a similar covering depth. Only at a certain depth underground seepage can erupt and form the arc-shaped canyon section, when the depth is thick, the slope will collapse to decrease the covering depth. Finally, pair point source supply can discover the trend of convergence of canyons.
Although we cannot grasp the actual seepage of groundwater, also impossible to obtain the flow rate of the density current in the canyon, we proved that the seepage canyon can developing on experimental slope. If the future research direction focuses on groundwater seepage simulation, it will enable have a deeper understanding of submarine canyon.
Keywords : Submarine canyon, Density currents, seepage, Continental margin.
1 Berndt, C., 2005: Focused fluid flow in passive continental margins.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 363, 2855-2871.
2 Boetius, A., and Suess, E., 2004: Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology, 205, 291-310.
3 Boffo, C.H., De Oliveira, T.A., Da Silva, D.B., Manica, R., and Borges, A.L.D.O., 2020: Continental-slope instability triggered by seepage: An experimental approach. Journal of Sedimentary Research, 90, 921-937.
4 Daly, R.A., 1936: Origin of submarine canyons. American Journal of Science,
s5-31, 401-420.
5 Goff, J.A., 2019: Modern and Fossil Pockmarks in the New England Mud Patch: Implications for Submarine Groundwater Discharge on the Middle Shelf. Geophysical Research Letters, 46, 12213-12220.
6 Greinert, J., 2008: Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant. Journal of Geophysical Research: Oceans, 113.
7 Gustafson, C., Key, K., and Evans, R.L., 2019: Aquifer systems extending far offshore on the U.S. Atlantic margin. Scientific Reports, 9, 8709.
8 Hovland, M., Gardner, J.V., and Judd, A.G., 2002: The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2, 127-136.
9 Lai, S.Y.-J., 2010: 共同演化的河谷與海谷之形貌動力學研究. 臺灣大學土木工程學研 究所學位論文, 1-331.
10 Marra, W.A., Braat, L., Baar, A.W., and Kleinhans, M.G., 2014: Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars. Icarus, 232, 97-117.
11 Nittrouer, J.a.a.J.M.E.F.J.H.K.J.P.M.S.P.L.W.C.A., 2007: Writing a Rosetta stone:insights into continental-margin sedimentary processes and strata.
12 Orange, D.L., and Breen, N.A., 1992: The effects of fluid escape on accretionary wedges 2. Seepage force, slope failure, headless submarine canyons, and vents. Journal of Geophysical Research: Solid Earth, 97, 9277-9295.
13 Orange, D.L., Mcadoo, B.G., Casey Moore, J., Tobin1, H., Screaton2, E., Chezar, H., Lee, H., Reid, M., andVail, R., 1997: Headless submarine canyons and fluid flow on the toe of the Cascadia accretionary complex. Basin Research, 9, 303-312.
14 Perng, A., and Capart, H., 2008: Underwater sand bed erosion and internal jump formation by travelling plane jets. Journal of fluid mechanics, 595, 1-43.
15 Rogers, J.N., Kelley, J.T., Belknap, D.F., Gontz, A., and Barnhardt, W.A., 2006: Shallow-water pockmark formation in temperate estuaries: A consideration of origins in the western gulf of Maine with special focus on Belfast Bay. Marine Geology, 225, 45-62.
16 Shepard, Shepard, F., and Marshall, N.F., 1973: Storm-generated current in La Jolla Submarine Canyon, California. Marine Geology, 15, M19-M24.
17 Skarke, A., Ruppel, C., Kodis, M., Brothers, D., and Lobecker, E., 2014: Widespread methane leakage from the seafloor on the northern US Atlantic margin. Nature Geoscience, 7, 657-661.
18 Taniguchi, M., Burnett, W.C., Cable, J.E., and Turner, J.V., 2002: Investigation of submarine groundwater discharge. Hydrological Processes, 16, 2115-2129.
19 Tyler, P., Amaro, T., Arzola, R., Cunha, M.R., De Stigter, H., Gooday, A., Huvenne, V., Ingels, J., Kiriakoulakis, K., Lastras, G., Masson, D., Oliveira, A., Pattenden, A., Vanreusel, A.N.N., Van Weering, T., Vitorino, J., Witte, U., andWolff, G., 2009: Europe's Grand Canyon Nazaré Submarine Canyon. Oceanography, 22, 46-57.
20 Vetter, E.W., and Dayton, P.K., 1998: Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Research Part II: Topical Studies in Oceanography, 45, 25-54.
21 Weaver, P.P.E., Wynn, R.B., Kenyon, N.H., and Evans, J., 2000: Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology, 47, 239-256.
22 張棠羽,2019,「以實驗方法探究向下丁壩對河道形貌之影響」,成功大學水利及
海洋工程研究所碩士論文,1-110。
23 黃彥鈞,2020,「寬度與水砂比影響水下辮狀河道演化之研究:實驗與水流模式
開發」,成功大學水利及海洋工程研究所碩士論文,1-121。