| 研究生: |
張珮郁 Chang, Pei-Yu |
|---|---|
| 論文名稱: |
微流元件內表面張力驅動之流體流動現象的實驗探討 Experimental Study of Surface Tension Control Flow Phenomenon in Micro-fluidic Devices |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 表面張力 、實驗光碟晶片 、毛細管壓力 |
| 外文關鍵詞: | surface tension, LabCD, capillary pressure |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,由於微機電系統(Micro-electro-mechanical system, MEMS)技術的成熟,其可被廣泛地運用在不同的學問上,例如:光電、化學、生醫檢測、機械、航空等方面。微總體分析系統(Micro Total Analysis System)便是將生醫檢測上取樣、樣本傳輸、混合、分離及偵測等功能,利用微機電技術將分析儀器縮小並整合到一信用卡大小之生醫晶片上。
本研究主要是利用微機電的製程技術,於微管道中設計、製作與測試一被動式微流體閥門,並應用於實驗光碟晶片上。被動式閥門主要原理是利用管道的截面積突然增加而產生一毛細管壓力阻力停止表面張力的作用,再利用類似光碟機旋轉平台,產生離心力驅動流體而突破閥門,在本研究過程中為得到更精確微流體閥門之設計,發展三維界面模式分析來輔助被動式微流體閥門的設計,由實驗結果得知本實驗所發展之三維界面模式比目前其他方法更能準確分析出閥門設計參數。由此閥門,光碟生醫晶片上的微量筒計、分離器等功能便可實現於晶片上。
Due to the maturity of MEMS( Micro-Electro-Mechanical-System )technology recently, it can be broadly used in many different applications, for example. It can be applied in optelectronics, chemical, biochemical test, mechanical, and aerospace. All these applications, μ TAS( Micro Total Analysis System) using MEMS technology to minimize and integrate analytical equipments into a credit-card sized biochip which includes sampling, sample transport, reaction, separation and detection function is most promising.
This paper presents the design, fabrication and test of a MEMS-based micro capillary stop valve for Lab_On_A-CD applications. The passive valves stop the flow of liquid inside a microchannel using capillary pressure barrier that develops when the channel cross-section changes abruptly. In this study, a modified 3-D meniscus model was proposed. The experimental results show the modified 3-D meniscus model can better predict the pressure barrier of the micro capillary stops.
1 S. Vogel, “Exposing Life's Limits with Dimensionless Numbers,” Physics
Today, Vol. 51, No. 11, pp.22-27, 1998
2 www.sciscape.org/articles/bio~dimension/
3 T. K. Jun and C. J. Kim , “Valveless Pumping using Traversing Vapor
Bubbles in Microchannels,” Applied Physics, Vol. 83, No. 11, pp.
4 J. Lee and C. J. Kim, “Liquid Micromotor Driven by Continuous
Electrowetting,” IEEE Micro Electro Mechanical Systems Workshop,
Heidelberg, Germany, pp. 538-543, Jan. 1998.
5 J. Lee and C. J. Kim, “Microactuation by Continuous Electrowetting
Phenomenon and Silicon Deep RIE Process,” ASME Int. Mechanical
Engineering Congress and Exposition, Anaheim, CA. Nov. 1998.
6 J. Lee, and C. J. Kim, “Surface Tension Driven Microactuation Based on
Continuous Electrowetting (CEW),” Journal of Microelectromechanical
System 2000
7 K. S. Yun, I. J. Cho, J.-U. Bu, C.-J. Kim, and E. Yoon, “A Surface-Tension
Driven Micropump for Low Voltage and Low Power Operations,” Journal
of Microelectromechanical Systems, Vol. 11, No. 5, pp. 454-461, Oct.2000
8 C. J. Kim, “Micropumping by Electrowetting,” Int. Mechanical Engineering
Congress and Exposition, New York, NY, IMECE2001/HTD-24200, Nov.
2001
9 K. S. Yun, I. J. cho, J. U. Bu, G. H. Kim, Y. S. Jeon, C.-J. Kim, and E. Yoon,
“A Micropump Driven by Continuous Electrowetting Actuation for Low
Voltage and Low Power Operations,” IEEE Conf. Micro Electro
Mechanical Systems (MEMS ’01), Interlaken, Switzerland, pp. 487-490.
Jan. 2001,
10 J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, “Electrowetting
and electrowetting-on-dielectric for microscale liquid handling,” IEEE
Micro Electro Mechanical Systems Workshop, Interlaken, Switzerland,
21-25, pp. 259-68, Jan. 2001
11 H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low Voltage
electrowetting-on-dielectric,” Journal of Applied Physics, Vol. 92, No. 7,
pp. 4080-4087, 2002.
12 P. F. Man, C. H. Mastrangelo, M. A. Burns, and D. T. Burke,
“Microfabricated apillarity-driven stop valve and sample injector,” in
International Conference on Micro Electromechanical Systems (MEMS 106
98), pp. 45–50, 1997.
13 P. F. Man, C. H. Mastrangelo, C. H. Burns, M. A. Burns, and D. T. Burke,
“Microfabricated Capillary-Driven Stop Valve and Sample Injector,” 11th
Annual International Workshop on Micro Electro Mechanical Systems,
Heidelberg, Germany, January 25-29, 1998
14 D. C. Duffy, “Microfabricated Centrifugal Microfluidic Systems:
Characterization and Multiple Enzymatic Assays,” Analytical Chemistry
71, 20,1999
15 M. J. Madou, L. J. Lee, K. W. Koelling, S. Daunert, S. Lai, C. G. Koh, Y.
J. Juang, L. Yu, and Y. Lu, “Design Fabrication of Polymer Microfluidic
Platforms for biomedical Application,” ANTEC-SPE 59th, vol. 3, pp.
2534-2538 (May), 2001.
16 L. J. Lee, M. J. Madou, K. W. Koelling, S. Daunert, S. Lai, C. G. Koh, Y.
J. Juang, Y. Lu, and L. Yu, “Design and Fabrication of CD-Like
Microfluidic Platforms for Diagnostics: Polymer-Based Microfabrication,”
Biomedical Microdevices, vol. 3, no. 4, pp. 339-351, 2001.
17 M.J. Madou, L. J. Lee, S. Daunert, S. Lai, C. H. Shih, “ Design and
Fabrication of CD-Like Microfluidic Platforms for Diagnostics :
Microfluidic Functions,” Biomedical Microdevices, vol. 3, no 3,
pp.245-254, 2001.
18 M. J. Madou, Y. Lu, S. Lai, C. G. Koh, Y. J. Juang, L. J. Lee, and B.
Wenner, “A Novel Design on a CD Disk for 2-Point Calibration
Measurement,” Sensor and Actuators A, vol91, no 3, pp.301-306, 2001.
19 R. D. Johnson, I. H. A. Badr, G. Barrett, S. Lai, Y. Lu, M. J. Madou, and
L. G. Bachas, “Development of a Fully-Integrated Analysis System for
Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics,” Anal.
Chem., vol. 73, pp. 3940-3946, 2001.
20 M. J. Madou, G. J. Kellogg, “The LabCD: A Centrifuge-Based
Microfluidic Platform for Diagnostics,” SPIE. San Jose, CA , 1998.
21 M. J. Madou, Y. Lu, S. Lai, L. J. Lee, and S. Daunert, “A Centrifugal
Microfluidic Platform-A Comparison,”Micro Total Analysis system, pp.
565, 2000
22 S. C. Lin, F. G. Tseng and C. C. Chieng, “Numerical Simulation of
Surface Tension Driven Spotting Using Micro-Stamping Process through
Microchannels ,” International Journal of colloid and Interface Sience,2002.
23 F. G. Tseng, I. D. Yang, K. H. Lin, K. T. Ma, M. C. Lu, Y. T. Tseng and C.
C. Chieng, “Fluid Filling Into Microfabricated Reservoirs,” Sensors and
Actuators A, 97-98, pp. 131-138, 2002.
24 S. C. Lin, F. G. Tseng, Y. H. Cu, Y. C. Tsai, C. C. Chieng and H.M. Huang,
“Protein Microarray Prepared by a Capillary-Force-Driven Stamping
System with Bac-filling Dispensing Channels,” 3A-4, 2002
Nanotechnology and MEMS conference, Tainan, Taiwan, ROC, 2002
25 S. C. Lin, Y. C. Tsai, F. G. Tseng, H. M. Huang, and C. C. Chieng,
“Protein Microarray Patterned by a Surface-tension-driven Stamping
System with Discrete Dispensing Channels,” µTAS2002, Nara, Japan, Nov.
3-7, pp. 591-592, 2002.
26 W. Adamson,” Physical chemistry of surfaces,” 6th ed, 1997
27 陶雨台“表面物理化學”民77.
28 Thomas K. Jun and Chang-Jin Kim. “Microscale Pumping with
Traversing Bubbles in Microchannels,” Solid-State Sensor and Actuator
Workshop, Hilton Head Island, SC, pp. 144-147. June 1996
29 D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de
Rooij, and E. Delamarche “Autonomous Microfluidic Capillary System,”
mTAS2002, Nara, Japan, Nov. 3 -7, pp. 952-954, 2002
30 D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de
Rooij, and E. Delamarche “Autonomous Microfluidic Capillary System,”
Anal. Chem.2002, 74, 6139-6144
31 林哲信,李國賓,“Polymer-MEMS 及其微流體生醫晶片之應用,” 電子
月刊, 2003.
32 Donzel, M. Geissler, A. Bernard, H. Wolf, B. Michel, J.
Hilborn, E. Delamarche, “ Hydrophilic polymethylsiloxane stamps for
microcontact printing,” dv. Mater. 13, 1164-1167, 2001.
33 www.axis-shield-poc.com/density/dtech.htm
34 www.windrug.com/book58.php