簡易檢索 / 詳目顯示

研究生: 紀景發
Chi, Ching-Fa
論文名稱: CdS/CdSe量子點敏化TiO2光電極在光電化學電池產氫以及固態太陽能電池之應用
Applications of CdS/CdSe Quantum Dot-sensitized TiO2 Photoelectrodes for Photoelectrochemical Hydrogen generation and Solid-State Solar Cells
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 136
中文關鍵詞: 硫化鎘硒化鎘量子點共敏化效應光電化學製氫固態電池電洞傳輸層偶極距表面修飾
外文關鍵詞: Cadmium sulfide (CdS), cadmium selenide (CdSe), Quantum dots (QDs), Co-sensitization effect, Photoelectrochemical hydrogen generation, Solid state solar cell, Hole transfer materials, Dipole moment, Surface treatment
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用連續離子吸附反應成膜法(Successive ionic layer adsorption reaction, SILAR)將硫化鎘與硒化鎘量子點組裝到二氧化鈦薄膜表面,作為TiO2/CdS/CdSe共敏化光電極,並應用在光電化學系統進行水分解製氫。結果顯示,TiO2/CdS/CdSe光電極具有互補的吸光特性,且硫化鎘與硒化鎘的組裝順序對於共敏化電極之效能有很大的影響。由暗電流與平帶電位量測結果發現TiO2/CdS比TiO2/CdSe有較高的費米能階;而TiO2/CdS/CdSe、TiO2/CdSe/CdS的費米能階位置較TiO2/CdS低,推測CdS與CdSe界面之間可能有能階重排的機制存在。
    紫外光光電子譜結果顯示在TiO2/CdS/CdSe電極中,沉積在CdS外層的CdSe,其導帶位置向上移動證實了上述的機制。因此TiO2/CdS/CdSe電極在能階位置上有順向階梯狀的排列,有助於電子電洞對分離,效能相較TiO2/CdS、TiO2/CdSe可提升三倍達到飽和電流密度14.9 mA/cm2 (AM1.5 100 mW/cm2,UV cut-off)。 進一步在此電極上沉積上ZnS保護層,可增加電極穩定性並減少漏電流發生,目前TiO2/CdS/CdSe/ZnS光電極的最佳產氫速率可達到220uL/hr-cm2。 時間解析光激螢光(Time resolved photoluminescence)與開路電壓衰退分析(OCVD)顯示順向能階排列的TiO2/CdS/CdSe光電極導致電子有效地注入到二氧化鈦並維持較低的再結合速率。
    另一方面,本研究進一步利用順向能階結構的TiO2/CdS/CdSe共敏化光電極,結合固態電解質(Spiro-OMeTAD)取代液態電解質製作全固態量子點敏化太陽電池。對於2um 膜厚的電極,電池之光電轉換效率為0.61%(AM 1.5, 100mW/cm2)。進一步以雙異戊磷酸(Diisooxy phosphonic acid, DIOPA),與苯硫醇衍生物(Benzenethiol, BT)進行TiO2/CdS/CdSe光電極表面修飾:可抑制漏電流的發生並藉由BT分子的偶極矩促進電子注入到二氧化鈦導帶,改善元件的光電壓與光電流。同時以此兩種分子對光電極表面修飾(TiO2/QDs-BTOMe-DIOPA),元件之光電轉換效率可達0.88% (AM 1.5, 100mW/cm2)。

    The method of successive ionic layer adsorption reaction (SILAR) was used to assemble cadmium sulfide (CdS) and cadmium selenide (CdSe) onto mesoporous TiO2 films. CdS/CdSe co-sensitized photoelectrodes were prepared and applied for photoelectrochemical hydrogen generation. The results show that the CdS/CdSe co-sensitized photoelectrodes have a complementary effect on the light harvest, and furthermore, the performance of the electrodes is strongly dependent on the order of CdS and CdSe with respected to the TiO2. Dark current and flat-band measurements revealed that TiO2/CdS has a Fermi-level higher than that of TiO2/CdSe while both Fermi-levels of TiO2/CdS/CdSe and TiO2/CdSe/CdS locate between those of TiO2/CdS and TiO2/CdSe, which implies energy level reorganization occurs at the CdS/CdSe interface.
    The ultraviolet photoelectron spectroscopy (UPS) analysis showed an upward shift of CdSe conduction band edge in the TiO2/CdS/CdSe, sustaining the inference mentioned above. Therefore, TiO2/CdS/CdSe electrode possess a stepwise structure of energy levels, which is advantageous to the electron injection and hole regeneration in the photoelectrode. The saturated photocurrent achieved by the TiO2/CdS/CdSe electrode is 14.9 mA/cm2 (AM1.5 100 mW/cm2, UV cut-off) which is three times the values obtained by the TiO2/CdS and TiO2/CdSe. By using zinc sulfide as a passivation layer to improve the stability and reduce the leakage current, the corresponding hydrogen evolution rate measured for the TiO2/CdS/CdSe/ZnS electrode is 220 µmol/cm2h. Time resolved photoluminescence (PL) and open-circuit photovoltae decay (OCVD) experiments revealed that the photogenerated electrons in the TiO2/CdS/CdSe have higher injection efficiency, but lower recombination rate to the electrolyte, attributable to the stepwise structure of band-edge levels constructed by the effect of the energy level alignment.
    Furthermore, TiO2/CdS/CdSe co-sensitized electrode was utilized to fabricate all-solid-state quantum dot sensitized solar cells (QD-SSCs) by using an organic hole transport material (Spiro-OMeTAD), instead of liquid electrolytes. An overall conversion efficiency of 0.65 % (AM 1.5, 100 mW/cm2) was obtained for the TiO2/CdS/CdSe electrode of 2 μm in thickness. Moreover, diisooctyl phosphonic acid (DIOPA) and benzenethiol derivatives were used as surface-modifying agents of the TiO2/CdS/CdSe electrode. It was found that the dipole-moment induced by the surface-modified layers can inhibit the charge recombination, facilitate charge injection from QDs to TiO2, and therefore, enhance photovoltage and photocurrent of the QD-SSC. The overall conversion efficiency achieved by the TiO2/QDs-BTOMe-DIOPA electrode is 0.88%.

    Table of Contents 摘要........................................... I Abstract...................................... III 致謝........................................... V Table of Contents............................. VII List of Tables................................ XI List of Figures............................... XII Symbols and Abbreviations............................. XIX Chapter 1 Introduction............................... 1 1-1 Background......................................... 1 1-2 Photovoltaic system................................ 2 1-3 Hydrogen energy.....................................5 1-4 Research Motivation.................................8 1-5 Reference...........................................11 Chapter 2 Principle and Literature Review...........12 2-1 Semiconductor materials and Quantum dot.............12 2-2 Characteristics of quantum dot......................14 2-2-1 Quantum confinement effect....................... 14 2-2-2 Impact ionization (I.I.) and Auger recombination..16 2-3 Quantum dot synthesis and sensitization.............18 2-3-1 Direct adsorption (DA)........................... 18 2-3-2 Chemical Bath Deposition (CBD)....................18 2-3 -3 Success Ionic Layer Adsorption Reaction (SILAR)..19 2-3-4 Self-Assembled Monolayer method (SAM).............19 2-4 Semiconductor electrochemistry......................21 2-4-1 Fermi-level (EF)..................................21 2-4-2 Semiconductor/electrolyte interface...............23 2-5 Photovoltaic cells (PV cells).......................26 2-5-1 Photoelectrochemical Cell (PEC)...................26 2-5-2 Photoelectrolytic cell for water decomposition....28 2-6 Dye sensitized solar cells (DSSCs)..................31 2-6-1 History of DSSCs..................................31 2-6-2 Working principle of DSSCs........................32 2-6-3 Component of DSSCs................................33 2-6-4 Quantum-Dots Sensitized Solar Cells (QD-SSCs).....37 2-7 Solid-state Dye sensitized Solar Cell...............40 2-7-1 Hole transfer materials (HTM) and Spiro-OMeTAD....40 2-7-2 Evolution of Dye- and QDs-sensitized solid state solar cell..................................43 2-8 Photovoltaic characterization.......................45 2-8-1 Current-voltage measurement for three electrodes electrochemical cell..............................45 2-8-2 Current-voltage measurement for solar cells [69]..47 2-8-3 Incident photo to current conversion efficiency (IPCE).................................51 2-9 Reference...........................................53 Chapter 3 CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Hydrogen Generation in a Photoelectrochemical cell....................56 3-1 Introduction.........................................56 3-2 Experimental.........................................57 3-2-1 Materials and chemicals............................57 3-2-2 Instrument & Euipment..............................58 3-2-3 Fabrication of TiO2/QDs electrode..................59 3-2-4 Measurement of TiO2/QDs electrodes.................60 3-3 Results and Discussion...............................63 3-3-1 CdS-sensitized TiO2 electrode......................63 3-3-2 CdSe- and CdS/CdSe- sensitized TiO2 electrodes.....68 3-4 Conclusion...........................................84 3-5 Reference............................................84 Chapter 4 Energy Level Alignment, Electron Injection, and Charge Recombination Characteristics in CdS/CdSe Co-Sensitized TiO2 Photoelectrode...........................86 4-1 Introduction.........................................86 4-2 Experimental.........................................88 4-2-1 Materials, chemicals, and preparation..............88 4-2-2 Instrument & Equipment.............................88 4-2-3 Measurements.......................................89 4-3 Result and discussion................................90 4-4 Conclusions..........................................98 4-5 Reference............................................98 Chapter 5 QD-sensitized Solid State Solar Cell........100 5-1 Introduction........................................100 5-2 Experimental........................................102 5-2-1 Materials and chemicals...........................102 5-2-2 Instrument & Equipment............................104 5-2-3 Fabrication of TiO2/QDs electrode.................105 5-3 Results and Discussion..............................111 5-3-1 CdS/CdSe co-sensitized TiO2 electrode preparation by using high concentration ionic precursor................113 5-3-2 CdS/CdSe co-sensitized TiO2 electrode preparation by using diluted concentration ionic precursor...............................................113 5-4 Conclusion..............................................127 5-5 Reference...........................................128 Chapter 6 General conclusion.........................130 Appendix................................................132 A-I Supplementary Materials.............................132 Curriculum Vitae........................................135 List of Tables Table 2-1 Representative literature review of the QD-SSC devices.....................39 Table 2-2 Representative of the progressive QDs sensitized solar cell based on solid state hole conductor (AM. 1.5, 100mW/cm2 illumination).....................44 Table 3-1 Progressive literature survey for photoelectrochemical cell composed of QDs sensitized-Metal oxide electrode for hydrogen generation (AM 1.5, 100 W/cm2) .......................83 Table 5-1 I-V characteristics of the various QDs-sensitized TiO2 (0.5 M Cd2+ and S2-, 0.5 M Cd2+ and 0.3M Na2SeSO3 is used for SILAR process, H represents the high concentration ionic solution is used for SILAR process)................113 Table 5-2 Summarized I-V characteristics of the various QDs-sensitized TiO2 for solid state cell application. 0.05 M Cd2+ and S2-, 0.5 M Cd2+ and 0.06M Na2SeSO3 is used for SILAR process, all data were obtained under 1 Sun condition (AM 1.5, 100mW/cm2). The number in parenthesis represents the SILAR cycles.....................116 Table 5-3 I-V characteristics of liquid cell composed of the various TiO2/CdS(5)/CdSe(n)-L electrodes and polysulfide electrolyte.....................116 Table 5-4 Summarized I-V characteristics of TiO2/CdS(5)/CdSe(8)-L photoelectrodes via various surface treatments by 4-Methoxybenzenethiol (BTOMe), 4-Chlorobenzenethiol (BTCl), diisooctyl phosphinic acid (DIOPA) molecules, and the coupled treatment was named as BTOMe-DIOPA and BTCl-DIOPA (AM 1.5, 100mW/cm2). The measured work function was acquired based on AC-2 experiment..125 Table 5-5 Progressive literature survey of TiO2/QDs/Spiro solid state solar cell device (2um mesoporous TiO2 film). (AM 1.5, 100 mW/cm2).....................127 List of Figures Figure 1-1 Scheme of the charge separation in a p-n junction solar cell......................................2 Figure 1-2 The relation between the lattice constant and band gap in chalcopyrite alloy...................3 Figure 1-3 Illustration of photocatalytic reaction for hydrogen generation...................7 Figure 1-4 Configuration of the photoelectrochemical cell for hydrogen generation ...................7 Figure 1-5 Solar radiation spectrum ...................8 Figure 1-6 The relative energy level of the various semiconductor materials ...................9 Figure 2-1 The relationship between electronic band structure and size-scale in a semiconductor Material ...13 Figure 2-2 Absorption and photoluminescence (PL) spectra of CdSe nanocrystals with the various size, prepared with the different synthesized temperatures. (From a to e represents the increased temperature from 190 to 270 C, and the size grows from 6 to 13.4 nm)...................14 Figure 2-3 Size effect on the first exciton the absorption peak position for CdTe, CdSe, and CdS nanocrystals...................15 Figure 2-4 Illustration of (a) Impact ionization (b) Auger Recombination processes ...................17 Figure 2-5 Illustration for Success Ionic Layer Adsorption Reaction (SILAR) method...................19 Figure 2-6 Procedure of QDs depostion by self-assembled monolayer (SAM) method.....20 Figure 2-7Illustration of the QDs assembled by bifunctional linker combined with the sequential success ionic layer adsorption reaction...................21 Figure 2-8 Fermi level (EF) position of the metal, solution and semiconductor...................22 Figure 2-9 Interface between Semiconductor and electrolyte for n-type, p-type semiconductor (a) Before contact in the dark (b) After contact in the dark (c) Contact under illumination .....23 Figure 2-10 Double layers at solid/liquid interface. SC is the semiconductor space charge region, HR is the Helmholtz layer and GR is Gouy region....................24 Figure 2-11 A typical Mott-Schottky for n-type and p-type semiconductor electrode in a certain electrolyte...................26 Figure 2-12 Different types of photoelectrochemical cells classified with the net free energy change. SC denotes semiconductor and M is the metal...................28 Figure 2-13 Energy diagram of PEC components: anode (semiconductor), electrolyte, and cathode (metal) under various status (a) before galvanic contact (b) after galvanic contact between anode and cathode. (c) Effect of light on electronic structure of PEC components. (d) Effect of light on energy diagram of PEC with externally applied bias ...................30 Figure 2-14 Configuration and charge transfer/transport path for dye sensitized solar cell bead on liquid electrolyte.................... 33 Figure 2-15 Molecular structure and the corresponding efficiency of several representative sensitizers...................35 Figure 2-16 The configuration of solid-state Dye sensitized solar cell......................................40 Figure 2-17 Structure of (a) triphenyldiamine molecule (TPD) and (b) 2,2’,7,7’-tretakis(N,N-di-p-methoxyphenyl-amine)-9-9’- spirofifluorene (spiro-OMeTAD)...................43 Figure 2-18 Illustration of charge transportation in solid state sloar cell based on Spiro-OMeTAD.....44 Figure 2-19 I-V curve for three electrodes electrochemical system......................................46 Figure 2-20 η versus applied potential curve derived from Figure 2-19 and Eq (2.11)...................46 Figure 2-21 Equivalent electric scheme of the DSSC........47 Figure 2-22 Representation of an I-V curve including Isc, Voc, Ioup, Voup and the corresponding power generation curve. PPP is the Point Peak Power...................49 Figure 2-23 Illustration of Air Mass concept..............51 Figure 2-24 (Blue curve) Spectral distribution of the intensity for AM 1.5 solar radiation. (Yellow curves) Isc values for a device converting all incident photons below the absorption onset wavelength into electric current...52 Figure 3-1 Flow chart of photoelectrochemical hydrogen generation.......................................62 Figure 3-2 Setup of (a) I-V measurement in a three electrodes photoelectrochemical cell (b) Quantitative analysis of the collected gas...................63 Figure 3-3 SEM image for (a) a bare TiO2 film prepared with P25 and (b)TiO2 film thickness of 12um....................64 Figure 3-4 UV-Vis absorption spectra of a bare TiO2 film, and the TiO2 film after introduction one cycle (curve 1) to five cycles (curve 5) of CBD process for incorporation CdS. The thickness of the TiO2 film is 6.2 μm..................64 Figure 3-5 Variation of photocurrent density versus measured potential for TiO2 and TiO2/CdS photoelectrodes. The thickness of the TiO2 film is 6.2 μm. The photocurrents were measured under visible-light illumination (100 mW/cm2) in a 0.24M Na2S + 0.35M Na2SO3 solution with a scanning rate of 5 mV/s.......65 Figure 3-6 Variation of photocurrent density versus measured potential for TiO2/CdS(5) photoelectrodes of various thicknesses. The photocurrents were measured under visible-light illumination (100 mW/cm2) in a 0.24M Na2S + 0.35M Na2SO3 solution with a scanning rate of 5 mV/s. …………………..67 Figure 3-7 UV-Vis absorption spectra of a bare TiO2 film as well as TiO2 film after introduction one cycle (curve 1) to five cycles (curve 5) of CBD process for incorporation CdS. The thickness of the TiO2 film is 12.2 μm...............68 Figure 3-8 Photocurrent density versus the measured potential for TiO2 and various TiO2/CdSe photoelectrodes. The thickness of the TiO2 film is ca. 12 μm. The photocurrents were measured under visible-light illumination (100 mW/cm2) in a 0.24M Na2S + 0.35M Na2SO3 solution with a scanning rate of 5 mV/s...................................69 Figure 3-9 UV-Vis absorption spectra of a bare TiO2 film, and the TiO2 films sensitized by (a) CdS(4)/CdSe(n) (b) CdSe (n)/CdS QDs, n represents the SILAR cycles................70 Figure 3-10 High-Resolution TEM images showing (a) a mesoporous structure of the TiO2/CdS/CdSe electrode, and (b) the arrangement of CdS and CdSe around a TiO2 crystallite.. 72 Figure 3- 11 Current density versus potential for various photoelectrodes measured in dark conditions (a) and under illumination of AM 1.5 light (with UV cutoff) at 100 mW/cm2 (b).......................................................73 Figure 3-12 Mott-Schottky pots for various photoelectrodes.......................................76 Figure 3-13 Relative Fermi level and band edges position of CdS and CdSe before (a), and after Fermi level alignment due to their contact (b). The proposed band edges structures for the TiO2/CdS/CdSe (c), and TiO2/CdSe/CdS (d) electrodes in equilibrium with the redox couples in the electrolyte. The Fermi levels (EF) indicated in (a) and (b) are OCPs (vs. Ag/AgCl) measured in dark conditions.....79 Figure 3-14 Incident photon to current conversion efficiencies (IPCE) for various electrodes measured from the photocurrents monitored at different excitation wavelengths. These measurements were performed at an applied voltage of 0.5 V (vs. OCP).......................................80 Figure 3-15 Variation of hydrogen evolution rates with the operation time for various QD-sensitized TiO2 photoanodes. The photoelectrodes have a working area of 1 cm2 and were illuminated by UV cut-off, and AM 1.5 (100 mW/cm2).....82 Figure 4-1 Ultraviolet photoelectron spectra for bare TiO2 and the various QD-sensitized TiO2 electrodes in the valence band region. The insert shows the spectra in wide scan...91 Figure 4-2 Energy diagram for bare TiO2 ,CdS- ,CdSe- and CdS/CdSe-sensitized TiO2 electrodes. The valence band maximum (VBM) position determined from UPS spectra (Figure 1), and the CBM was calculated using the optical band gap. ......................................91 Figure 4-3 PL emission spectra with 405 nm excitation laser for (a) TiO2/CdS and TiO2/CdSe electrodes (b) TiO2/CdSe and TiO2/CdS/CdSe electrodes....................93 Figure 4-4 Time-resolved photoluminescence measurement of three samples: (A) TiO2/CdSe (Red), (B) TiO2/CdS that the temporal resolution of the optical system is about 0.2 nsec. (black), and (C) TiO2/CdS/CdSe (Wine). Curve D (open circle).......................................94 Figure 4- 5 Illustration for charge separation path in TiO2/CdS/CdSe electrode...................................95 Figure 4-6 (a) Photovoltage decay versus measuring time for the various QD-SSCs. (b) Response time derived from OCVD corresponding to the results in (a)....................97 Figure 5-1 Molecular structure of (a) 4-Methoxybenzenethiol(BTOMe) (b)4-Clorobenzenethiol and (BTCl) (c) Diisophosphonic acid (DIOPA)....................103 Figure 5-2 Insulated pattern and schematic devices for solid state DSSCs......................................107 Figure 5-3 (a)TiO2/QDs electrode and (b) the liquid cell device.......................................108 Figure 5-4 Experimental frame work of QDs-sensitized solar cells......................................110 Figure 5-5 (a)UV-Vis absorption spectra of the TiO2/CdS(4)/CdSe(n) electrodes prepared with the various CdSe deposited layer (n) based on high deposition concentration for SILAR process, (b)IPCE spectra of the various devices fabricated with the electrodes shown in (a). The number in parenthesis represents the SILAR cycles...112 Figure 5-6 SEM images of (a) Bare TiO2 film, (b) CdS(5)/CdSe(4), (c) CdS(5)CdSe(4) and (d) CdS(5)/CdSe(15) (e) cross section image. The number in parenthesis represents the SILAR cycles.................... 114 Figure 5-7 UV-Vis absorption spectra of bare TiO2 and TiO2/QDs electrodes prepared with increasing CdSe deposition layers of SILAR process based on low ionic concentration. The number in parenthesis represents the SILAR cycles...115 Figure 5-8 Illustration of QDs filling within TiO2/QDs electrode prepared with the different ionic precursor solution.......................................117 Figure 5-9 Effect of the deposited CdSe layers on device efficiency and short circuit current density based on (a) polysulfide electrolyte and (b) Spiro-OMeTAD HTM....119 Figure 5-10 I-V curve of TiO2/CdS(5)/CdSe(8) modified with benzenethiol derivatives (BT) and diisooctyl acid (DIOPA) molecules. (a)Under illumination (AM 1.5, 100 mW/cm2) (b) In dark condition. The number in parenthesis represents the SILAR cycles.......................................121 Figure 5-11 Representation of the energy level alignment of TiO2/QDs electrodes through surface treatment by Benzenethiol (BT) molecule....122 Figure 5-12 Incident photo to electron conversion efficiency (IPCE) of bare TiO2/CdS(5) and TiO2/CdS(5)/CdSe(8) electrodes via various surface treatment. The number in parenthesis represents the SILAR cycles.................122 Figure 5-13 Illustration of the TiO2/QDs electrode modified with Benzenethiol derivative and DIOPA molecules and the configuration of the solid state solar cell.........123 Figure 5-14 Impedance measurement of the device based on TiO2/CdS(5)/CdSe(8) electrodes with and without surface treatment at forward bias of -0.55 V under dark condition. 125 Figure A-1 The transmittance spectra of AM 1.5 and UV-cut off filters for Xe lamp calibration and photoelectrochemical hydrogen generation.....................................132 Figure A-2 Calibration line for hydrogen quantitative measurement......................................132 Figure A-3 Bare TiO2/QDs electrode...................133 Figure A-4 TiO2/QDs electrode modified by DIOPA....133 Figure A-5 TiO2/QDs electrode modified by BTOMe (Negative dipole molecule)......................................133 Figure A-6 TiO2/QDs electrode modified by BTCl (Positive dipole molecule)......................................134

    Chapter 1

    [1] Becquerel, A. E. Comt. Rend. Acad. Sci 1839, 9, 561.
    [2] M. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovoltaics Res. Appl.2008, 16, 435.
    [3] Schock, H. W.; Noufi, R. Prog. Photovolt. Res. Appl. 2000, 8, 151.
    [4] Wagner, S.; Shay, J. L.; Migliora.P; Kasper, H. M. Appl. Phys. Lett. 1974, 25, 434.
    Thin-film solar cells: next generation photovoltaics and its applications, edited by Y. Hamakawa (Springer-Verlag Berlin Heidelberg, 2004).
    [5] R. Herberholz, V. Nadenau, U. Rühle, C. KÖble, H. W. Schock and B. Dimmler, Solar Energy Mater. Solar Cells 1997, 49, 227.
    [6] T. M. Friedlmeier, D. Braunger, D. Hariskos, M. Kaiser, H. N. Wanka and H. W. Schock, 25th Photov. Spec. Conf. I EEE, New York, 1996, p845.
    [7] Contreras MA, Egaas B, Ramanathan K, Hiltner J,Swartzlander A, Hasoon F, Noufi R. Pro. in Photovoltaics: Res. and App. 1999, 7, 311.
    [8] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
    [9] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103.
    [10] See http://www.reuters.com/article/idUST15201920080525
    [11] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010,22,1.
    [12] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 36). Prog. Photovoltaics Res. Appl. 2010, 18, 346.
    [13] M. Ni, M. K. H. Leung, K. Sumathy, D. Y. C. Leung, Beijing P. R. C., 2004, 1, 475.
    [14]Ajay K. Ray, A.A.C.M.B. AIChE Journal, 1998, 44, 477.
    [15] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides Science, 2001, 293, 269.
    [16] Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature, 2001, 414, 625.
    [17] A. Fujishima, K. Honda, Nature, 1972, 238, 37.
    [18] O. Khaselev, J. A. Turner, Science 1998, 280, 425.
    [19] See http://www.eyesolarlux.com/Solar-simulation-ASTM-IEC-JIS.htm
    [20] Grätzel, M. Nature, 2001. 414, 338.

    Chapter 2

    [1] Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    [2] Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.
    [3] Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525
    [4] Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086.
    [5] Rossetti, R.;Ellison, J. L.; Gibson, J. M. J. Chem. Phys. 1983, 80, 4464.
    [6]Baskoutas, S.; Terzis, A. F. J. Appl. Phys. 2006, 99, 013708.
    [7] Landsberg, P.T. ; Nussbaumer, H.; Willeke, G. J. Appl. Phys. 1993, 74, 1451.
    [8] Kolodinski, S.; Werner, J.H.; Wittchen, T.; Queisser, H. J. Appl. Phys. Lett. 1993, 63, 2405.
    [9] Wang, Q.; Seo, D. K. Chem. Mater. 2006, 18, 5764.
    [10] Yu, W. W.; Qu, L.; Guo, W.; Peng, W. Chem. Mater. 2003, 15, 2854.
    [11] Christensen, O. J. Appl. Phys. 1976, 47, 690.
    [12] Wolf, M.; Brendel, R.; Werner, J. H.; Queisser, H. J. J. Appl. Phys. 1998, 83, 4213
    [13] Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865.
    [14] Shockley, W.; Queisser, H. J. J. Appl. Phys.1961, 32, 510.
    [15] Nozik, A. J. Physica E 2002, 14, 115.
    [16] Arachchige, I. U.; Brock, S. L. Acc. Chem. Res. 2007, 40, 801.
    [17] Pileni, M. P. J. Phys. Chem. 1993, 97, 6961.
    [18] Zhang, Z.; Dai, S.; Fan, X.; Blom, D. A.; Pennycook, S. J.; Wei, Y. J. Phys. Chem. B. 2001, 105, 6755.
    [19] Yang, J.; Lin, H.; He, Q.; Ling, L.; Zhu, C.; Bai, F. Langmuir 2001, 17, 5978.
    [20] Wang, Q. Q.; Xu, G.; Han, G. R. Cryst. Growth Des. 2006, 6, 1176.
    [21] Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X.-M.; Li, F. Q. J. Phys. Chem. B 2006, 110, 11704.
    [22] Britt, J.; Ferekides, C. Appl. Phys. Lett. 1993, 62, 2851.
    [23] Dona, J. M.; Herero, J. J. Electrochem. Soc. 1997, 144, 4091.
    [24] Contreras-Puente, G. Thin Solid Films 2000, 361, 378.
    [25] Blackburn, J. L.; Selmarten, D. C.; Nozik, A. J. J. Phys. Chem. B 2003, 107, 14154.
    [26] Kanniainen, T,; Lindroos, S.; Ihanus, J.; Leskela, M. J. Mater. Chem. 1996, 6, 983
    [27] Kongkanand, A.; Tvrdy, K.; Takechi, K; Kuno, M.; P. V. Kamat J. Am. Chem. Soc. 2008, 130, 4007.
    [28] Lee, T. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903.
    [29] Shen, Y. J.; Lee, Y. H. Nanotechnology 2008, 19, 045602.
    [30] Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.;Yang, Y. M. Appl. Phys.Lett. 2007, 90, 143517.
    [31] Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and application (2nd Ed.) Chapter 18, page 750 and 755.
    [32] Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, 1980, page 56.
    [33] Mollers, F.; Tolle, H. J.; Memming, R. J. Electrochem. Soc.1974, 121, 1160.
    [34]Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and application (2nd Ed.) Chapter 18, page 756.
    [35] Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27, 91.
    [36] Becquerel, E., C.R. Acad. Sci. Paris, 1839, 9, 561.
    [37] Spitler, M.T. J. Chem. Educ. 1983. 60, 330.
    [38] O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
    [39] Nazeeruddin, M. K.; Angelis, F. A. Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
    [40] Chen, X.; Mao, S. S. Chem. Rev.,2007, 107, 2891.
    [41] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103.
    [42] Grätzel, M. Acc. Chem. Res. 2009, 42, 1788.
    [43] Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R. Sol. Energy Mater. Sol. Cells 2001, 70, 85.
    [44] Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S.; Sol. Energy Mater. Sol. Cells 2008, 92, 814.
    [45] Wang, M.; Anghel, A. M.; Marsan , B. Cevey Ha, n. L.; Pootrakulchote , N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976.
    [46] Mora-Seró , I.; Giménez, S.; Fabregat-Santiago, F.; GóMEZ, R.; Shen,Q.; Toyoda, T,; Bisqert, J. Acc. Chem. Res. 2009, 42, 1848.
    [47] Lee, Y. L.; Chang, C. H. Appl. Phys.Lett. 2007, 91, 053503.
    [48] Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys.Lett. 2007, 91, 023116.
    [49] Lee, H. J.; Chen, P.; Moon, S. J.; Sauvage, F.; Sivula, K.; Bessho, T.; Gamelin, D. R.; Comte, P.; Zakeeruddin, S. M.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112, 11600.
    [50] Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604.
    [51] Fan, S. Q.; Fang, B.; Kim, J. H.; Kim, J. J.; Yu, J. S.; Ko, J. Appl. Phys.Lett. 2010, 96, 063501.
    [52] Yang, Z.; Chen, C. Y.; Liu, C. W.; Chang, H. T. Chem. Comm. 2010, 46, 5484.
    [53] Tubtimate, A.; Wu, K. L.; Tung, H. Y.; Lee, M. W.; Wang, G. J. Electro. Commun. 2010, 12, 1158.
    [54] Kuo, K. T.; Liu, D. M.; Chen, S. Y.; Lin, C. C. J. Mater. Chem. 2009, 19, 6780.
    [55] Wang, M.; Liu, J.; Cevey-Ha, N. L.; Moon, S. J.; Liska, P.; Humphry-Bakera, R.; Mosera, J. E.; Grätzel, C.; Wang, P.; Zakeeruddina, S. M.; Grätzel, M. Nano Today 2010, 5, 169.
    [56] Salbeck, J.; Yu, N.; Bauer, J.; Weissörtel, F.; Bestgen, H. Synthetic Metals
    1997, 91, 209.
    [57] Facci, J. S.; Abkowitz, M.; Limburg, W. J Phys Chem 1991, 95, 7908.
    [58] Naito, K.; Miura, A. J. Phys. Chem. 1993, 97, 6240.
    [59] Naito, K. Chem. Mater. 1994, 6, 2343.
    [60] Poplavskyy, D.; Nelson. J. J Appl Phys 2003, 93, 341.
    [61] Plass, R.; Pelet, S.; Krüger, J..; Grätzel, M. J. Phys. Chem. B 2002, 106, 7578.
    [62] Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.
    [63] Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett, 2009, 9, 4221-4227.
    [64]Chang, J. A.; Rhee, J. H.; Im,S. H.; Lee, Y. H.; Kim, H. J.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2010, 10, 2609.
    [65] Moon, S. J.; Itzhaik, Y.; Yum, J. H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M. J. Phys. Chem. Lett. 2010, 1, 1524.
    [66] Khan, S.U.M.; Al-Shahry, M.; Ingler, Jr. W.B. Science, 2002. 297, 2243.
    [67] Hägglund, C.; Grätzel, M.; Kasemo, B. Comment on reference 66 (II) Science, 2003, 301, 1673b.
    [68] Lackner, K. S. Comment on reference 66 (III) Science, 2003, 301, 1673c.
    [69] Nelson, J. The Physics of Solar Cells, World Scientific Pub Co Inc 2003.
    [70] Barnes, P. R. F., Anderson, A. Y.; Koops, S. E.; Durrant, J. R.; O’Regan B. C. J. Phys. Chem. C 2009, 113, 1126.

    Chapter 3

    [1] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
    [2] Kazuhiko, M.;Kazunari, D. J. Phys. Chem. C 2007, 111, 7851.
    [3] Kato, H.;Asakura, K.;Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
    [4] Wang, Y.;Zh5ang, Z.;Zhu, Y.;Li, Z.;Vajtai, R.;Ci, L.;Ajayan, P. M. ACS Nano. 208, 2, 1492.
    [5] Maeda, K.;Takata, T.;Hara, M.;Saito, N.;Inoue, Y.;Kobayashi, H.;Domen, K. J. Am. Chem. Soc. 2005, 127, 8286.
    [6] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Science 2001, 293, 269
    [7] Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, L. S. J. Phys. Chem. C 2007, 111, 8677.
    [8] Khan, S. U. M.; Al-Shahry, M.; Ingler Jr, W. B. Science 2002, 297, 2243.
    [9] Peter, L. M.; Riley, D. J.; Tull, E. J.; Wijayantha, K. G.. U. Chem. Commun. 2002, 10, 1030.
    [10] Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Appl. Phys. Lett. 2007, 90, 143517.
    [11] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.
    [12] Lee, Y. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903.
    [13] Plass, R.; Serge, P.; Krüger, J.; Grätzel, M. J. Phys. Chem. B. 2002, 106, 7578.
    [14] Hoyer, P. ; Könenkamp, R. Appl. Phys. Lett. 1995, 66, 349.
    [15] Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601.
    [16] Zaban, A.; Micici, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153.
    [17] Mane, R.S. Electrochimica Acta, 2005. 50, 2453.
    [18] De, G.C.; Roy, A.M.; Bhattacharya, S.S. Int. J. Hydrogen Energy, 1995. 20, 127.
    [19] Spanhel L, Haase M, Weller H and Henglein A. J. Am. Chem. Soc. 1987, 109, 5649.
    [20] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
    [21] Grätzel, M. Nature, 2001. 414, 338.
    [22] Mollers, F.; Tolle, H. J.; Memming, R. J. Electrochem. Soc. 1974, 121, 1160.
    [23] Khan, S. U. M.; Akikusa, J. J. Electrochem. Soc. 1974, 145, 89.
    [24]Gryse, R. D.; Gomes, W. P.; Cardon, F.; Vennik, J. J. Electrochem. Soc.: Solid-state Science and Technology, 1975, p711.
    [25] Yoon, K. H.; Shin, C. W.; Kang, D. H. J. Appl. Phys. 1997, 81, 7024.
    [26] Diguna, L.J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116.
    [27] Yang, S. M.; Huang, C. H.; Zhai, J.; Wang Z. S.; Jiang L. J. Mater. Chem. 2002, 12, 1459.
    [28] Sun, W. T.; Tu,Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124.
    [29] Wang, H.; Bai, Y.; Zhang, H.; Zhang, Z.; Li, J.; Guo, L. J. Phys. Chem. C 2010, 114, 16451.
    [30] Gao, X. F.; Sun, W. T.; A, Guo.;Peng, L. M. Appl. Phys. Lett. 2010, 96, 53104.
    [31] Seol, M.; Kim, H.; Kim, W.; Yong, K. Electro. Commun. 2010, 12 1416.
    [32]E Seabold, J. A.; Shankar, K.; Wilke, R. H. T.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Choi K. S. Chem. Mater. 2008, 20, 5266.
    [33] Gao, X. F.; Li, H. B.; Sun, W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. J. Phys. Chem. C 2009, 113, 7531.
    [34] Chen, H. M.; Chen, C. K.; Chanf, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H. Angew. Chem. Int. Ed. 2010, 49, 5966.
    [35] De, G. C.; Roy, A. M.; Bhattacharya, S. S. Int. J. Hydrogen Energy 1996, 21, 19.

    Chapter 4

    [1] Fan, S. Q.; Kim, D.; Kim, J. J.; Jung, D. W.; Kang, S. O.; Ko, J. Electroc. Commun. 2009, 11, 1337.
    [2] Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007.
    [3] Plass, R.; Serge, P.; Krüger, J.; Grätzel, M. J. Phys. Chem. B. 2002, 106, 7578.
    [4] Lan, G. Y.; Yang, Z.; Lin, Y.W.; Lin, Z. H.; Liao, H. Y.; Chang, H. T. J. Mater. Chem. 2009, 19, 2349.
    [5] Ryan, O.; Marian, N.; Joop, S.; Albert, G. Nanotechnology 2007, 18, 055702.
    [6] Kuo, K. T.; Liu, D. M.; Chen, S. Y.; Lin, C. C. J. Mater. Chem. 2009, 19, 6780.
    [7] Ning, Z.; Tian, H.; Qin, H.; Zhang, Q.; Ågren, H.; Sun, L.; Fu, Y.J. Phys.
    Chem. C 2010, 114, 15184.
    [8] Bang, J.; Park, J.; Lee, J. H.; Won, N.; Nam,J.; Lim, J.; Chang, B. Y.; Lee, H. J.; Chon, B.;Shin, J.; Park, J. B.; Choi, J. H.; Cho, K.; Park, S. M.; Joo, T.; Kim, S.Chem. Mater. 2010, 22, 233.
    [9] Chun, W. J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, Mi.; Kawai, M.; Matsumoto, Y.; Domen, K. J. Phys. Chem. B 2003, 107, 1798.
    [10]Liu, G.; Jaegermann, W.; He, J.; Sundström, V.;Sun, L. J. Phys. Chem. B 2002, 106, 5814.
    [11]Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X. Y. J. Phys. Chem. C 2008, 112, 8419.
    [12] Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604.
    [13] Grätzel, M. Nature 2001, 414, 338.
    [14]Bisquert, J.; Zaban, A.; Greenshtein, M.; I. Mora-Sero J. Am. Chem. Soc. 2004, 126, 13550.
    [15]Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859

    Chapter 5

    [1] Dalton, L. R.; Sullivan, P. A.; Bale, D.; Olbricht, B.; Davies, J.; Benight, S.; Kosilkin, I.; Robinson, B. H.; Eichinger, B. E.; Jen, A. K.-Y. Organic Thin Films for Photonic Applications, Chapter 2, 2010, 139, 13-33 ACS Symposium Series.
    [2] Yang, R.; Xu, Y.; Dang, X. D.; Nguyen, T. Q.; Cao, Y.; Bazan, G. C J. Am. Chem. Soc. 2008, 130, 3282-3283.
    [3] Gebeyehu, D.; Brabec, C. J.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. S. Synthetic Metals, 121, 2001, 1549-1550.
    [4] Wang, Y.; Yang, K.; Kim, S. C.; Nagarajan, R,; Samuelson, L. A.; Kumar, J. Chem. Mater. 2006, 18, 4215-4217.
    [5] Poplavskyy, D.; Nelson, J. J. Appl. Phys. 2003, 93, 341-346.
    [6] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011-1065
    [7] Bach, U.; Tachibana, Y.; Moser, J. E.; Haque, S. A.; Durrant, J. R.; Gra¨tzel, M.; Klug, D. R. J. Am. Chem. Soc. 1999, 121, 7445-7446
    [8] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103-3109.
    [9] Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Grätzel, M. Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Lett. 2007, 7, 3372-3376.
    [10]Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 7536-7539.
    [11]Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, W.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562.
    [12]Wang, M.; Chen, P.; Humphry-Baker, R.; Zakeeruddin, S. M. Grätzel, M. ChemPhysChem 2009, 10, 290-299.
    [13]Cappel, U. B.; Gibson, E. A.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2009, 113, 6275-6281.
    [14]Ding, I. K.; Tétreault, N.; Jérémie B.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 2431-2436.
    [15]Yu, W. W.; Qu, L.; Guo, W.; Peng, W. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854-2860.
    [16]Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.
    [17]Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, 63-66.
    [18] Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett, 2009, 9, 4221-4227.
    [19]Chang, J. A.; Rhee, J. H.; Im,S. H.; Lee, Y. H.; Kim, H. J.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2010, 10, 2609–2612.
    [20] Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101–2104.
    [21] Wang, M.; Grätzel, C.; Moon, S. J.; Humphry-Baker, R.; Rossier-Iten, N.; Zakeeruddin, S. M.; Grätzel, M. Adv. Funct. Mater. 2009, 19, 2163–217.
    [22] Krüger, J.; Bach, U.; Grätzel, M.; Adv. Mater. 2000, 12, 447-451.
    [23]Yum, J. H.; Moon, S. J.; Humphry-Baker, R.; Walter, P.; Geiger, T.; N¨uesch, F.; Grätzel, M.; Nazeeruddin, M. K. Nanotechnology 2008, 19, 424005.
    [24] Shalom, M.; Rühle, S.; Hod, I.; Yahav,; Zaban A.; J. Am. Chem. Soc. 2009, 131, 9876-9877.
    [25]Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I.; Zaban, A.; Bisquert, J. J. Am. Chem. Soc. 2010, 132, 6834-6839.
    [26] Kavan, L.; Grätzel, M. Electrochimica acta 1995, 40, 643.
    [27] Ito, S.; Nazeeruddin, M. K.; Pascal Comte, P. L.; Charvet, R.; Péchy, P.; Jirousek, M.; Kay, A.; Zakeeruddin, S. M.; Grätzel, M. Prog. Photovolt: Res. Appl. 2006,14, 589–601.
    [28] Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.
    [29] Moon, S. J.; Itzhaik, Y.; Yum, J. H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M. J. Phys. Chem. Lett. 2010, 1, 1524.

    下載圖示 校內:2013-01-27公開
    校外:2013-01-27公開
    QR CODE