簡易檢索 / 詳目顯示

研究生: 譚博宇
Tan, Bo-Yu
論文名稱: 使用增強型記憶、進化及局部搜尋灰狼演算法進行真空閥門元件之最佳化設計
Optimal Design of Vacuum Valve Components Using an Augmented Memory, Evolutionary Operator, and Local Search Based Grey Wolf Optimizer
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 221
中文關鍵詞: 灰狼演算法幾何最佳化有限元素分析閥門真空閥門簧片碟盤
外文關鍵詞: Grey Wolf Optimizer, Geometric Optimization, Finite Element Analysis, Valve, Vacuum Valve, Leaf Spring, Disk
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究參考記憶、進化及局部搜尋灰狼演算法、增強型灰狼演算法,並對領導狼判斷進行修改,提出增強型記憶、進化及局部搜尋灰狼演算法。為了驗證提出之演算法性能,使用十一種最佳化測試函數進行比較,比較分為兩部分。第一部分為與灰狼演算法相關變體之比較,包含灰狼演算法、遞補灰狼演算法(本研究改善領導狼之判斷)、修正灰狼演算法、加權距離灰狼演算法、增強型灰狼演算法及記憶、進化及局部搜尋灰狼演算法。第二部分為與其它演算法之比較,包含布穀鳥演算法、螢火蟲演算法、修正螢火蟲演算法、鯨魚演算法及灰狼演算法。結果顯示,本研究提出之增強型記憶、進化及局部搜尋灰狼演算法在平均目標函數值、最佳目標函數值與目標函數值之標準差的結果排名均表現優異。此外,本研究並將提出之演算法應用於真空閘閥中的簧片及碟盤幾何最佳化設計,在滿足材料降伏強度和幾何邊界條件的前提下,簧片以最大化抵抗支撐塊之力量作為目標進行幾何最佳化設計,碟盤則以最大化線性區間及最小化應力作為目標進行幾何最佳化設計,最佳化過程以有限元素分析軟體ANSYS計算目標函數值。簧片最佳化之模擬結果顯示,去除應力奇異點後之應力皆小於不鏽鋼SUS301 3/4H降伏強度774.45 MPa,但抵抗支撐塊之力量相較於原始設計之厚度0.8 mm、1mm的簧片小,此原因是因為應力與力量是正相關。碟盤最佳化模擬結果之去除接觸點之應力小於Inconel 600降伏強度365.86MPa,線性區間相較原始設計及原始設計(v74)提升了200%及28.57%;去除接觸點之應力相較於前兩款原始設計降低了14.34%及0.12%。最後,對最佳化結果進行荷重位-移實驗,最佳化簧片進行荷重-位移實驗及模擬,模擬的最大荷重為191.15N,實驗的最大荷重為147.81N,誤差為22.67%。最佳化碟盤的非線性參數之模擬的最大荷重為370.48kgf,實驗的最大荷重為299.48kgf,誤差為19.16%。

    This study proposes an Augmented Memory, Evolutionary Operator, and Local Search Based Grey Wolf Optimizer (AMELGWOs) based on the Memory, Evolutionary operator, and Local search based Grey Wolf Optimizer (MELGWO), as well as the Augmented Grey Wolf Optimizer (AGWO), and by modifying the decision-making process of the leading wolves. To verify the performance of the proposed algorithm, it was compared using 11 benchmark functions. The comparison is divided into two parts. The first part involves comparing with variants related to the Grey Wolf Optimizer, including the Grey Wolf Optimizer (GWO), Grey Wolf Optimizer with substitution (GWOs), the Modified Grey Wolf Optimizer (mGWO), the Weighted Distance Grey Wolf Optimizer (wdGWO), the Augmented Grey Wolf Optimizer (AGWO), and the Memory, Evolutionary operator, and Local Search based Grey Wolf Optimizer (MELGWO). The second part involves comparisons with other algorithms, including the Cuckoo Search Algorithm (CS), Firefly Algorithm (FA), Modified Firefly Algorithm (MFA), Whale Optimization Algorithm (WOA), and Grey Wolf Optimizer (GWO). The results show that the proposed Augmented Memory, Evolutionary operator, and Local Search based Grey Wolf Optimizer (AMELGWOs) performs excellently in terms of the mean fitness, the best fitness, and the standard deviation of the fitness. Additionally, this study applies the proposed algorithm to the geometric optimization design of the leaf spring and disk in vacuum gate valves. The leaf spring is optimized to maximize force, and the disk is optimized to maximize the linear region and minimize stress, both while satisfying yield strength and boundary conditions. The optimization process involves calculating the objective function values using finite element analysis software, ANSYS.

    摘要 i ABSTRACT ii 致謝 xxxiii 目錄 xxxiv 表目錄 xxxviii 圖目錄 xlii 符號說明 xlvii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 真空閥門文獻回顧 4 1-2-2 啟發式演算法文獻回顧 8 1-2-3 灰狼演算法文獻回顧 9 1-3 研究目的 10 1-4 本文架構 11 第二章 灰狼演算法及其變體 12 2-1 前言 12 2-2 灰狼演算法 12 2-2-1 灰狼演算法數學模型 13 2-2-2 灰狼演算法流程 14 2-2-3 灰狼演算法領導狼判斷修改 16 2-3 增強型灰狼演算法 17 2-4 記憶、進化及局部搜尋灰狼演算法 18 2-4-1 記憶 18 2-4-2 進化 20 2-4-3 局部搜尋 21 2-4-4 族群遞減 22 2-5 增強型記憶、進化及局部搜尋灰狼演算法 22 2-5-1 演算法修改 22 2-5-2 演算法流程 23 2-6 本章小結 25 第三章 演算法比較 26 3-1 前言 26 3-2 測試函數 26 3-3 灰狼演算法相關變體之結果比較 33 3-3-1 族群數量N=20 33 3-3-2 族群數量N=40 40 3-3-3 族群數量N=100 47 3-4 其它啟發式演算法之結果比較 54 3-4-1 族群數量N=20 54 3-4-2 族群數量N=40 61 3-4-3 族群數量N=100 68 3-5 綜合比較 75 3-6 本章小結 89 第四章 材料試驗 90 4-1 前言 90 4-2 拉伸試驗介紹 90 4-3 試片 90 4-4 拉伸試驗 92 4-5 實驗數據 93 4-6 本章小節 96 第五章 簧片幾何最佳化設計 97 5-1 前言 97 5-2 簧片架設 97 5-3 最佳化設計變數及演算法參數設定 98 5-4 最佳化模型建立 101 5-5 目標函數與限制式 102 5-5-1 目標函數 102 5-5-2 限制式 102 5-6 最佳化流程 103 5-7 最佳化結果 105 5-8 設計結果有限元素分析 107 5-8-1 最佳化模型有限元素分析 107 5-8-2 接觸分析模型有限元素分析 112 5-9 設計結果比較 118 5-10 本章小結 120 第六章 碟盤幾何最佳化設計 121 6-1 前言 121 6-2 碟盤架設 121 6-3 最佳化設計變數及演算法參數設定 122 6-4 最佳化模型建立 124 6-5 目標函數與限制式 125 6-5-1 目標函數 125 6-5-2 應力限制式 127 6-5-3 剛性限制式 128 6-5-4 幾何限制 129 6-5-5 圓角限制 134 6-6 最佳化流程 136 6-7 最佳化結果 138 6-8 設計結果有限元素分析 142 6-9 設計結果比較 150 6-10 本章小結 151 第七章 最佳化設計之簧片及碟盤實驗 152 7-1 前言 152 7-2 簧片實驗 152 7-2-1 簧片實驗架設及流程 152 7-2-2 簧片實驗結果及比較 154 7-3 碟盤實驗 158 7-3-1 碟盤實驗架設及流程 158 7-3-2 碟盤實驗結果及比較 160 7-4 本章小節 162 第八章 結論與建議 163 8-1 結論 163 8-2 建議 165 參考文獻 166

    [1] VAT 公司網頁. https://www.vatvalve.com/
    [2] H. Bosch, "Vacuum gate valve," U.S. Patent 4,560,141, Dec. 14 1985.
    [3] E. A. Thebado, "High vacuum valve," U.S. Patent 3,554,486, Jan.12, 1971.
    [4] R. W. Olmsted, "Pendulum valve assembly," U.S. Patent 6,089,537, Jul.18, 2000.
    [5] F. Geiser, "Butterfly valve," U.S. Patent 6,494,434 B1, Dec.17, 2002.
    [6] S. C. Caraballo, J. L. O. Rodríguez, J. A. L. Ruiz, and R. A. Fernández, "Optimization of a butterfly valve disc using 3D topology and genetic algorithms," Structural and Multidisciplinary Optimization, vol. 56, no. 4, pp. 941-957, Oct 2017.
    [7] R. Storn and K. Price, "Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, Dec 1997.
    [8] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in 2009 World congress on nature & biologically inspired computing (NaBIC), 2009, pp. 210-214.
    [9] X.-S. Yang, "Firefly algorithms for multimodal optimization," in International symposium on stochastic algorithms, 2009: Springer, pp. 169-178.
    [10] 王秋閔, "修正螢火蟲演算法於路徑產生機構之最佳化尺寸合成," 國立成功大學機械工程學系碩士學位論文, 2018.
    [11] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Advances in Engineering Software, vol. 95, pp. 51-67, May 2016.
    [12] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, Mar 2014.
    [13] N. Mittal, U. Singh, and B. S. Sohi, "Modified grey wolf optimizer for global engineering optimization," Applied Computational Intelligence and Soft Computing, vol. 2016, 2016.
    [14] M. R. S. Malik, E. R. Mohideen, and L. Ali, "Weighted distance grey wolf optimizer for global optimization problems," in 2015 IEEE international conference on computational intelligence and computing research (ICCIC), 2015: IEEE, pp. 1-6.
    [15] T.-S. Pan, T.-K. Dao, T.-T. Nguyen, and S.-C. Chu, "A communication strategy for paralleling grey wolf optimizer," in Genetic and Evolutionary Computing: Proceedings of the Ninth International Conference on Genetic and Evolutionary Computing, August 26-28, 2015, Yangon, Myanmar-Volume II 9, 2016: Springer, pp. 253-262.
    [16] A. J. Zhu, C. P. Xu, Z. Li, J. Wu, and Z. B. Liu, "Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC," Journal of Systems Engineering and Electronics, vol. 26, no. 2, pp. 317-328, Apr 2015.
    [17] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, "Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems," Applied Soft Computing, vol. 69, pp. 504-515, Aug 2018.
    [18] R. Ahmed, G. P. Rangaiah, S. Mahadzir, S. Mirjalili, M. H. Hassan, and S. Kamel, "Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique," Knowledge-Based Systems, vol. 264, Mar 2023.
    [19] S. Surjanovic and D. Bingham, "Virtual Library of Simulation Experiments: Test Functions and Datasets." https://www.sfu.ca/~ssurjano/optimization.html.
    [20] "CNS 2112 : 2014 金屬材料拉伸試片," 中華民國國家標準, 2014.
    [21] "ASTM E8 : Standard Test Methods for Tension Testing of Metallic Materials," American Society for Testing and Materials, 2016.
    [22] MakeItfrom 網頁. https://www.makeitfrom.com/
    [23] Special Metals 網頁. https://www.specialmetals.com/
    [24] OTAI STELL 網頁. https://www.astmsteel.com/

    無法下載圖示 校內:2029-08-28公開
    校外:2029-08-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE