簡易檢索 / 詳目顯示

研究生: 謝夙惠
Shieh, Su-Huei
論文名稱: Galectin-1透過neuropilin-1調控人類內皮細胞的貼附和移動
Galectin-1 regulates human endothelial cells adhesion and migration through interaction with neuropilin-1
指導教授: 陳玉玲
Chen, Yuh-Ling
靳應臺
Jin, Ying-Tai
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: Galectin-1腫瘤血管新生細胞貼附能力Neuropilin-1細胞移動
外文關鍵詞: cell adhesion, Neuropilin-1, cell migration, Galectin-1
相關次數: 點閱:1323下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    Galectin-1 (Gal-1),屬於動物lactins家族的一員。由兩個具有ㄧ段可與β-半乳糖結合的胺基酸序列之次單位(subunits)以非共價鍵的方式鍵結組成的同型二聚體(homodimer),其分子量14 kDa共有135個胺基酸。Galectin-1蛋白涵括了許多生物上的功能,例如:細胞貼附、細胞增生、移動、細胞凋亡、發炎反應、轉移以及免疫調節等。本研究我們利用immunohistochemistry 發現galectin-1高度表現於口腔癌檢體之腫瘤周圍血管內皮細胞。同時發現口腔癌細胞株的conditioned medium可刺激血管內皮細胞(HUVECs)表現較多的Galectin-1。我們進一步的去釐清galectin-1在內皮細胞及誘發腫瘤血管新生成中所扮演的角色。In vitro,galectin-1有效地促進內皮細胞的貼附及移動;In vivo,galectin-1具有誘發血管通透性的能力。而Galectin-1造成的細胞貼附及移動現象在經由galectin-1抗體作用後,發現幾乎完全被抑制,高濃度的乳糖只有部分地抑制細胞貼附但可有效抑制Galectin-1誘導的細胞移動。另外,我們以表面薄膜共振系統又稱Biacore 系統之分析,發現neuropilin-1(NRP-1)具有結合galectin-1的能力,NRP1濃度增加對galectin-1結合的量也增加,其解離常數(KD)約為10-8M.;利用流式細胞儀分析FITC-galectin-1對細胞表面的結合能力,發現knockdown內皮細胞中的NRP-1,有效地降低了FITC-galectin-1對血管內皮細胞之結合。而且 galectin-1促進內皮細胞的貼附及移動也可以被NRP-1抗體或knockdown NRP1等方式抑制。此外,根據先前學者研究指出,NRP-1會去調控內皮細胞對細胞外基質(extracellular matrix)的貼附。而我們發現外加galectin-1具有增加內皮細胞對細胞外基質的貼附力,而且knockdown galectin-1會抑制內皮細胞對細胞外基質的貼附力,另外內皮細胞貼附於galectin-1的能力也會因knockdown NRP-1而減低。綜上所述,galectin-1過度表現於腫瘤周圍的血管內皮細胞,galectin-1透過結合在血管內皮細胞上的neuropilin-1而影響血管內皮細胞活性進而調控腫瘤血管的新生。

    英文摘要
    Galectin-1 (Gal-1) is a 14-kDa β-galactoside-binding lectin and involves in multiple biological functions, such as cell adhesion, cell proliferation, migration, apoptosis, inflammation, metastasis and immunoregulation. In the present study, we found that galectin-1 was highly expressed in tumor associated vascular endothelial cells in oral cancer specimens by immunohistochemical staining. The expression of galectin-1 in human umbilical vein endothelial cells (HUVECs) was upregulated by oral cancer cells conditioned media. We further clarified the functional role of galectin-1 in HUVECs and tumor induced neovascularization. Galectin-1 effectively promoted endothelial cells adhesion and migration in vitro, and increased vascular permeability in vivo. The galectin-1 induced HUVECs migration activities could be almost completely inhibited by antibodies of galectin-1 and high concentration of lactose, but the galectin-1-induced HUVECs adhesion was blocked only partially by high concentration of lactose. By surface plasmon resonance analysis, we found that galectin-1 could bind to neuropilin-1 (NRP-1) in a dose dependent manner and its dissociation constant (KD) was also determined to be around 10-8 M. Flow cytometry analysis showed that the binding of FITC-conjugated galectin-1 to HUVECs was inhibited by knockdown of NRP-1 expression. Furthermore, the biological effects of galectin-1 on HUVECs could be suppressed by anti-NRP-1 antibodies and silencing of NRP-1. Besides, previous report has shown that NRP-1 regulates attachment in human endothelial cells and is a critical regulator of endothelial cell adhesion to extracellular matrix. We found that HUVECs adhered to extracellular matrix could be enhanced by exogenous galectin-1 and inhibited by knockdown of galectin-1 expression. Endothelial cells adhered to galectin-1 could also be inhibited by silencing of NRP-1. Taken together, overexpression of galectin-1 in cancer associated endothelial cells might play important roles on tumor angiogenesis through interaction with NRP-1.

    目錄 中文摘要............................................................................................................I 英文摘要.........................................................................................................III 誌謝..................................................................................................................V 圖目錄.............................................................................................................IX 緒論...................................................................................................................1 Galectin-1.....................................................................................................................3 血管新生的過程及調控...............................................................................................5 Neuropilin-1.................................................................................................................8 生物分子交互作用系統..............................................................................................11 研究動機.........................................................................................................13 材料與方法.....................................................................................................14 人類臍靜脈內皮細胞(HUVEC)的初代培養(primary cell culture).......................14 人類臍靜脈內皮細胞(HUVEC)的繼代培養............................................................15 細胞保存.....................................................................................................................15 細胞計數.....................................................................................................................16 RNA干擾作用轉染(RNA Interference Transfection)................................................16 細胞蛋白樣本收集.....................................................................................................17 蛋白質電泳(Protein Electrophoresis).......................................................................18 西方點墨分析法(Western blot analysis)..................................................................20 免疫組織染色(immunohistochemistry)................................................................21 細胞增生分析(Cell Proliferation Assay)....................................................................23 細胞移動分析(Cell Migration Assay)........................................................................23 細胞貼附分析(Cell Adhesion Assay)........................................................................24 流動式生物感測系統(Biomolecule Interaction Analysis System)..........................25 FITC conjugated galectin-1......................................................................................26 細胞表面接受體分析流式細胞儀(Flow cytometry).............................................27 血管滲透分析(Vascular Permeability).....................................................................27 實驗結果.........................................................................................................29 1.免疫組織染色觀察galectin-1在腫瘤組織中的表現............................................29 2.人類臍帶靜脈內皮細胞株(HUVECs)以不同腫瘤細胞株之conditioned medium刺激後galectin-1有upregulated之現象.............................................................29 3. Galectin-1可誘發人類臍帶靜脈內皮細胞株(HUVECs)之移動.......................30 4. Galectin-1不影響人類臍帶靜脈內皮細胞株(HUVECs)之增生.......................31 5. Galectin-1可促進人類臍帶靜脈內皮細胞株(HUVECs)之貼附且在細胞外基質(extracellular matrix, ECM)之醣蛋白(Fibronectin及Laminin)貼附能力具有加乘效果................................................................................................................31 6. 內生性galectin-1經siRNA作用可抑制人類臍帶靜脈內皮細胞株(HUVECs)對細胞外基質之醣蛋白的貼附................................................................................32 7. Lactose可部份抑制人類臍帶靜脈內皮細胞株(HUVECs)在已coating 之galectin-1蛋白上細胞的貼附..............................................................................33 8. Galectin-1蛋白有效地增加血管通透性(Vascular permeability)......................34 9. 表面薄膜共振分析發現galectin-1可與neuropilin-1結合且其Kd約為10-8 M34 10. Silencing人類臍帶靜脈內皮細胞株(HUVECs) neuropilin-1之表現可抑制HUVECs與FITC-Galectin-1結合......................................................................36 11. 內生性neuropilin-1經siRNA作用後降低人類臍帶靜脈內皮細胞株(HUVECs)在已coating 之galectin-1蛋白上細胞的貼附....................................................37 12. 內生性neuropilin-1經siRNA作用後降低galectin-1蛋白所誘發之人類臍帶靜脈內皮細胞株(HUVECs)的移動.........................................................................38 13. Galectin-1可誘發HUVECs細胞之VEGFR2磷酸化.......................................38 14. Galectin-1活化HUVECs細胞MAPK pathway................................................40 參考文獻.........................................................................................................49 結果圖.............................................................................................................56 附錄一:儀器.................................................................................................75 附錄二:英文縮寫.........................................................................................77 自述.................................................................................................................79

    參考文獻
    Adams, L., Scott, G. K., and Weinberg, C. S. (1996). Biphasic modulation of cell growth by recombinant human galectin-1. Biochim Biophys Acta 1312, 137-144.
    Allione, A., Wells, V., Forni, G., Mallucci, L., and Novelli, F. (1998). Beta-galactoside-binding protein (beta GBP) alters the cell cycle, up-regulates expression of the alpha- and beta-chains of the IFN-gamma receptor, and triggers IFN-gamma-mediated apoptosis of activated human T lymphocytes. J Immunol 161, 2114-2119.
    Banerjee, S. K., Zoubine, M. N., Tran, T. M., Weston, A. P., and Campbell, D. R. (2000). Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol 16, 253-260.
    Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994). Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269, 20807-20810.
    Bernatchez, P. N., Soker, S., and Sirois, M. G. (1999). Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274, 31047-31054.
    Berra, E., Milanini, J., Richard, D. E., Le Gall, M., Vinals, F., Gothie, E., Roux, D., Pages, G., and Pouyssegur, J. (2000). Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 60, 1171-1178.
    Blaser, C., Kaufmann, M., Muller, C., Zimmermann, C., Wells, V., Mallucci, L., and Pircher, H. (1998). Beta-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28, 2311-2319.
    Camby, I., Belot, N., Lefranc, F., Sadeghi, N., de Launoit, Y., Kaltner, H., Musette, S., Darro, F., Danguy, A., Salmon, I., et al. (2002). Galectin-1 modulates human glioblastoma cell migration into the brain through modifications to the actin cytoskeleton and levels of expression of small GTPases. J Neuropathol Exp Neurol 61, 585-596.
    Caron, M., Joubert, R., and Bladier, D. (1987). Purification and characterization of a beta-galactoside-binding soluble lectin from rat and bovine brain. Biochim Biophys Acta 925, 290-296.
    Chen, C., Li, M., Chai, H., Yang, H., Fisher, W. E., and Yao, Q. (2005). Roles of neuropilins in neuronal development, angiogenesis, and cancers. World J Surg 29, 271-275.
    Chiariotti, L., Berlingieri, M. T., De Rosa, P., Battaglia, C., Berger, N., Bruni, C. B., and Fusco, A. (1992). Increased expression of the negative growth factor, galactoside-binding protein, gene in transformed thyroid cells and in
    49
    human thyroid carcinomas. Oncogene 7, 2507-2511.
    Clausse, N., van den Brule, F., Waltregny, D., Garnier, F., and Castronovo, V. (1999). Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion. Angiogenesis 3, 317-325.
    Cooper, D. N. (2002). Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572, 209-231.
    Cooper, D. N., and Barondes, S. H. (1990). Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 110, 1681-1691.
    Dias-Baruffi, M., Zhu, H., Cho, M., Karmakar, S., McEver, R. P., and Cummings, R. D. (2003). Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 278, 41282-41293.
    Eliceiri, B. P., and Cheresh, D. A. (2001). Adhesion events in angiogenesis. Curr Opin Cell Biol 13, 563-568.
    Eliceiri, B. P., Klemke, R., Stromblad, S., and Cheresh, D. A. (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140, 1255-1263.
    Ellerhorst, J., Nguyen, T., Cooper, D. N., Lotan, D., and Lotan, R. (1999). Differential expression of endogenous galectin-1 and galectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype. Int J Oncol 14, 217-224.
    Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J., and Fink, N. E. (2005). Galectin-1 receptors in different cell types. J Biomed Sci 12, 13-29.
    Folkman, J., and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288, 551-556.
    Folkman, J., and Shing, Y. (1992). Angiogenesis. J Biol Chem 267, 10931-10934.
    Fred Brewer, C. (2002). Binding and cross-linking properties of galectins. Biochim Biophys Acta 1572, 255-262.
    Fujisawa, H., Kitsukawa, T., Kawakami, A., Takagi, S., Shimizu, M., and Hirata, T. (1997). Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res 290, 465-470.
    Gabius, H. J. (2001). Probing the cons and pros of lectin-induced immunomodulation: case studies for the mistletoe lectin and galectin-1. Biochimie 83, 659-666.
    Galvan, M., Tsuboi, S., Fukuda, M., and Baum, L. G. (2000). Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 275, 16730-16737.
    Gillenwater, A., Xu, X. C., el-Naggar, A. K., Clayman, G. L., and Lotan, R.
    50
    (1996). Expression of galectins in head and neck squamous cell carcinoma. Head Neck 18, 422-432.
    Griffioen, A. W., and Molema, G. (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52, 237-268.
    Gupta, K., Kshirsagar, S., Li, W., Gui, L., Ramakrishnan, S., Gupta, P., Law, P. Y., and Hebbel, R. P. (1999). VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247, 495-504.
    Guttmann-Raviv, N., Kessler, O., Shraga-Heled, N., Lange, T., Herzog, Y., and Neufeld, G. (2006). The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231, 1-11.
    Hittelet, A., Legendre, H., Nagy, N., Bronckart, Y., Pector, J. C., Salmon, I., Yeaton, P., Gabius, H. J., Kiss, R., and Camby, I. (2003). Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration. Int J Cancer 103, 370-379.
    Horiguchi, N., Arimoto, K., Mizutani, A., Endo-Ichikawa, Y., Nakada, H., and Taketani, S. (2003). Galectin-1 induces cell adhesion to the extracellular matrix and apoptosis of non-adherent human colon cancer Colo201 cells. J Biochem (Tokyo) 134, 869-874.
    Hynes, M. A., Buck, L. B., Gitt, M., Barondes, S., Dodd, J., and Jessell, T. M. (1989). Carbohydrate recognition in neuronal development: structure and expression of surface oligosaccharides and beta-galactoside-binding lectins. Ciba Found Symp 145, 189-210; discussion 210-188.
    Kaltner, H., and Stierstorfer, B. (1998). Animal lectins as cell adhesion molecules. Acta Anat (Basel) 161, 162-179.
    Kashio, Y., Nakamura, K., Abedin, M. J., Seki, M., Nishi, N., Yoshida, N., Nakamura, T., and Hirashima, M. (2003). Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 170, 3631-3636.
    Kawakami, A., Kitsukawa, T., Takagi, S., and Fujisawa, H. (1996). Developmentally regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J Neurobiol 29, 1-17.
    Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., and Fujisawa, H. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895-4902.
    Kerbel, R. S. (2000). Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505-515.
    Kilpatrick, D. C. (2002). Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572, 187-197.
    Kitsukawa, T., Shimizu, M., Sanbo, M., Hirata, T., Taniguchi, M., Bekku, Y., Yagi, T., and Fujisawa, H. (1997). Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995-1005.
    51
    Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H., and Fujisawa, H. (1995). Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 4309-4318.
    Kolodkin, A. L., Levengood, D. V., Rowe, E. G., Tai, Y. T., Giger, R. J., and Ginty, D. D. (1997). Neuropilin is a semaphorin III receptor. Cell 90, 753-762.
    Latil, A., Bieche, I., Pesche, S., Valeri, A., Fournier, G., Cussenot, O., and Lidereau, R. (2000). VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 89, 167-171.
    Levi, G., Tarrab-Hazdai, R., and Teichberg, V. I. (1983). Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol 13, 500-507.
    Levy, Y., Arbel-Goren, R., Hadari, Y. R., Eshhar, S., Ronen, D., Elhanany, E., Geiger, B., and Zick, Y. (2001). Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem 276, 31285-31295.
    Liu, F. T. (2005). Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136, 385-400.
    Meadows, K. N., Bryant, P., and Pumiglia, K. (2001). Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276, 49289-49298.
    Mehul, B., and Hughes, R. C. (1997). Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci 110 ( Pt 10), 1169-1178.
    Miao, H. Q., and Klagsbrun, M. (2000). Neuropilin is a mediator of angiogenesis. Cancer Metastasis Rev 19, 29-37.
    Miao, H. Q., Lee, P., Lin, H., Soker, S., and Klagsbrun, M. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. Faseb J 14, 2532-2539.
    Moiseeva, E. P., Javed, Q., Spring, E. L., and de Bono, D. P. (2000). Galectin 1 is involved in vascular smooth muscle cell proliferation. Cardiovasc Res 45, 493-502.
    Moiseeva, E. P., Spring, E. L., Baron, J. H., and de Bono, D. P. (1999). Galectin 1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix. J Vasc Res 36, 47-58.
    Munoz-Chapuli, R., Quesada, A. R., and Angel Medina, M. (2004). Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61, 2224-2243.
    Murga, M., Fernandez-Capetillo, O., and Tosato, G. (2005). Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105, 1992-1999.
    52
    Murohara, T., Horowitz, J. R., Silver, M., Tsurumi, Y., Chen, D., Sullivan, A., and Isner, J. M. (1998). Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97, 99-107.
    Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13, 9-22.
    Nguyen, J. T., Evans, D. P., Galvan, M., Pace, K. E., Leitenberg, D., Bui, T. N., and Baum, L. G. (2001). CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 167, 5697-5707.
    Novelli, F., Allione, A., Wells, V., Forni, G., and Mallucci, L. (1999). Negative cell cycle control of human T cells by beta-galactoside binding protein (beta GBP): induction of programmed cell death in leukaemic cells. J Cell Physiol 178, 102-108.
    Ozeki, Y., Matsui, T., Yamamoto, Y., Funahashi, M., Hamako, J., and Titani, K. (1995). Tissue fibronectin is an endogenous ligand for galectin-1. Glycobiology 5, 255-261.
    Pace, K. E., Lee, C., Stewart, P. L., and Baum, L. G. (1999). Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol 163, 3801-3811.
    Perillo, N. L., Marcus, M. E., and Baum, L. G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med 76, 402-412.
    Perillo, N. L., Pace, K. E., Seilhamer, J. J., and Baum, L. G. (1995). Apoptosis of T cells mediated by galectin-1. Nature 378, 736-739.
    Rabinovich, G. A., Alonso, C. R., Sotomayor, C. E., Durand, S., Bocco, J. L., and Riera, C. M. (2000). Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ 7, 747-753.
    Rabinovich, G. A., Ariel, A., Hershkoviz, R., Hirabayashi, J., Kasai, K. I., and Lider, O. (1999a). Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97, 100-106.
    Rabinovich, G. A., Riera, C. M., Landa, C. A., and Sotomayor, C. E. (1999b). Galectins: a key intersection between glycobiology and immunology. Braz J Med Biol Res 32, 383-393.
    Raz, A., and Lotan, R. (1987). Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6, 433-452.
    Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671-674.
    Rorive, S., Belot, N., Decaestecker, C., Lefranc, F., Gordower, L., Micik, S., Maurage, C. A., Kaltner, H., Ruchoux, M. M., Danguy, A., et al. (2001). Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 53
    33, 241-255.
    Rousseau, S., Houle, F., Landry, J., and Huot, J. (1997). p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15, 2169-2177.
    Rye, P. D., Fodstad, O., Emilsen, E., and Bryne, M. (1998). Invasion potential and N-acetylgalactosamine expression in a human melanoma model. Int J Cancer 75, 609-614.
    Sacchettini, J. C., Baum, L. G., and Brewer, C. F. (2001). Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40, 3009-3015.
    Scott, K., and Weinberg, C. (2004). Galectin-1: a bifunctional regulator of cellular proliferation. Glycoconj J 19, 467-477.
    Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735-745.
    Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511-2514.
    Tinari, N., Kuwabara, I., Huflejt, M. E., Shen, P. F., Iacobelli, S., and Liu, F. T. (2001). Glycoprotein 90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell aggregation. Int J Cancer 91, 167-172.
    Vainionpaa, N., Kikkawa, Y., Lounatmaa, K., Miner, J. H., Rousselle, P., and Virtanen, I. (2006). Laminin-10 and Lutheran blood group glycoproteins in adhesion of human endothelial cells. Am J Physiol Cell Physiol 290, C764-775.
    van den Brule, F., Califice, S., Garnier, F., Fernandez, P. L., Berchuck, A., and Castronovo, V. (2003). Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest 83, 377-386.
    van den Brule, F. A., Buicu, C., Baldet, M., Sobel, M. E., Cooper, D. N., Marschal, P., and Castronovo, V. (1995). Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem Biophys Res Commun 209, 760-767.
    van den Brule, F. A., Buicu, C., Berchuck, A., Bast, R. C., Deprez, M., Liu, F. T., Cooper, D. N., Pieters, C., Sobel, M. E., and Castronovo, V. (1996). Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol 27, 1185-1191.
    van den Brule, F. A., Waltregny, D., and Castronovo, V. (2001). Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol 193, 80-87.
    Vespa, G. N., Lewis, L. A., Kozak, K. R., Moran, M., Nguyen, J. T., Baum, L.
    54
    G., and Miceli, M. C. (1999). Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J Immunol 162, 799-806.
    Wang, J., and Milner, R. (2006). Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J Neurochem 96, 148-159.
    Wells, V., Davies, D., and Mallucci, L. (1999). Cell cycle arrest and induction of apoptosis by beta galactoside binding protein (beta GBP) in human mammary cancer cells. A potential new approach to cancer control. Eur J Cancer 35, 978-983.
    Wells, V., and Mallucci, L. (1991). Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell 64, 91-97.
    Xu, X. C., el-Naggar, A. K., and Lotan, R. (1995). Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol 147, 815-822.
    Yamagishi, H., Olson, E. N., and Srivastava, D. (2000). The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 105, 261-270.
    Zagzag, D., Hooper, A., Friedlander, D. R., Chan, W., Holash, J., Wiegand, S. J., Yancopoulos, G. D., and Grumet, M. (1999). In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159, 391-400.
    Zhou, Q., and Cummings, R. D. (1990). The S-type lectin from calf heart tissue binds selectively to the carbohydrate chains of laminin. Arch Biochem Biophys 281, 27-35.
    Zhou, Q., and Cummings, R. D. (1993). L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys 300, 6-17.
    Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H. T., Donnini, S., Granger, H. J., and Bicknell, R. (1997). Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99, 2625-2634.
    55

    下載圖示 校內:2009-08-02公開
    校外:2009-08-02公開
    QR CODE