簡易檢索 / 詳目顯示

研究生: 阮海泰
Nguyen, Hai-Thai
論文名稱: 二維石墨烯材料奈米間隙接點與光學整流天線之製備與整合
Fabrication of 2D materials nanogap junctions and their integration into optical rectennas
指導教授: 蘇彥勳
Su,Yen-Hsun
共同指導教授: 謝馬利歐
Mario, Hofmann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 75
外文關鍵詞: nanogap, 2D materials, optical rectenna, quantum computer, quantum information
相關次數: 點閱:183下載:60
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Two-dimensional materials have shown exceptional optoelectronic properties that can be further enhanced through formation of junctions. This thesis demonstrates a new approach to fabricate the gaps at nanometer-sized scale within a 2D material device. By exploiting the enhanced reactivity of 2D materials' edges, edge trimming of graphene was achieved with nanometer precision. The charge carrier transport mechanism inside the nanogap is found to be direct tunneling which is expected to be suitable for high-frequency applications. Moreover, the fabrication process of nanogap was proven to be robust and scalable and 70% of nanogap junctions were within a 0.5 nm window and 97% were within a 3nm window. The formation of precise lateral junctions opens a new way to produce MIM diodes consisting of graphene/nanogap/titanium. Simulations indicate the high cutoff frequency of such a lateral device which make it promising as an optical rectennas which extracts energy from the light field through a wave rectification process. We demonstrate the experimental realization of such an optical 2D rectenna and show rectification behaviors at wavelengths around 500 nm and explicit polarization control. Furthermore, the experimental data shows good agreement with semi-classical Photon-Assisted Tunneling (PAT) model and a tenfold increase in photon-electron coupling over previous rectennas was observed. The unprecedented conversion efficiency of 7x10-4 % demonstrates the potential of 2D nanogap junctions for future optoelectronic devices in areas such as optical quantum computing.

    CHAPTER 1 INTRODUCTION 1 1.1 Quantum computer and quantum information 2 1.2 Physical implementation 4 1.3 The photon counting devices 5 1.4 The rectenna- the potential candidate for quantum information application 6 1.5 Conclusion 8 CHAPTER 2 THEORY 10 2.1 Characteristic analyzing by current-voltage (I-V) curve 11 2.1.1 Simmon’s model 12 2.1.2 Charge carrier transportation mechanism 16 2.1.3 Photon- assisted tunneling (PAT) 18 CHAPTER 3 FABRICATION PROCESS AND EXPERIMENTS SETUP 21 3.1 Graphene quality 22 3.2 Device fabrication process 24 3.3 Current-Voltage (I-V) characterization set up 26 3.3.1 Temperature-dependent set up 27 3.3.2 Illuminated condition set up 28 CHAPTER 4 RESULTS AND DISCUSSION 34 4.1 1D junction formation 35 4.2 Scalability of nanogap fabrication process 40 4.3 Rectenna behaviors 45 4.3.1 Rectenna operation mechanism 45 4.3.2 The impact of gate voltage on tunneling current 47 4.3.3 Impact of gate voltage on rectenna operation 50 4.3.4 The photocurrent at illumination condition 51 4.3.5 These parameter impact to photocurrent 52 4.3.6 The PAT theory prediction of illumination current 57 4.3.7 The parameter dependence of alpha 58 4.3.8 The wavelength dependence of ISC and VOC 62 4.3.9 The peak PCE of rectenna 63 4.3.10 The polarization dependence of rectenna 65 CHAPTER 5 CONCLUSION 67 REFERENCE 69

    1 Feynman, R. P. Quantum mechanical computers. Foundations of Physics 16, 507-531, doi:10.1007/BF01886518 (1986).
    2 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505-510, doi:10.1038/s41586-019-1666-5 (2019).
    3 MacDonell, R. J. et al. Analog quantum simulation of chemical dynamics. Chemical Science 12, 9794-9805, doi:10.1039/D1SC02142G (2021).
    4 Lu, D. et al. Simulation of Chemical Isomerization Reaction Dynamics on a NMR Quantum Simulator. Physical Review Letters 107, 020501, doi:10.1103/PhysRevLett.107.020501 (2011).
    5 Hassanzadeh, P. Towards the quantum-enabled technologies for development of drugs or delivery systems. Journal of Controlled Release 324, 260-279, doi:doi:10.1016/j.jconrel.2020.04.050 (2020).
    6 Alvarez-Rodriguez, U., Sanz, M., Lamata, L. & Solano, E. Quantum Artificial Life in an IBM Quantum Computer. Scientific Reports 8, 14793, doi:10.1038/s41598-018-33125-3 (2018).
    7 Cory, D. G., Price, M. D. & Havel, T. F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Physica D: Nonlinear Phenomena 120, 82-101, doi:doi:10.1016/S0167-2789(98)00046-3 (1998).
    8 Friis, N. et al. Observation of Entangled States of a Fully Controlled 20-Qubit System. Physical Review X 8, 021012, doi:10.1103/PhysRevX.8.021012 (2018).
    9 Hao, H. et al. Improved pulse discrimination for a superconducting series nanowire detector by applying a digital matched filter. Applied Physics Letters 119, 232601, doi:10.1063/5.0068449 (2021).
    10 Luo, W. et al. Room-Temperature Single-Photon Detector Based on Single Nanowire. Nano Letters 18, 5439-5445, doi:10.1021/acs.nanolett.8b01795 (2018).
    11 Li, H. W. et al. Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Applied Physics Letters 91, 073516, doi:10.1063/1.2768884 (2007).
    12 Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43-50, doi:10.1038/nature26160 (2018).
    13 Huo, N. & Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nature Communications 8, 572, doi:10.1038/s41467-017-00722-1 (2017).
    14 Wang, Y. et al. A High-Efficiency and Reconfigurable Rectenna Array for Dynamic Output DC Power Control. Frontiers in Physics 10, doi:10.3389/fphy.2022.866656 (2022).
    15 Wang, Y. et al. Efficiency Enhanced Seven-Band Omnidirectional Rectenna for RF Energy Harvesting. IEEE Transactions on Antennas and Propagation 70, 8473-8484, doi:10.1109/TAP.2022.3177492 (2022).
    16 Zhu, Z., Joshi, S., Grover, S. & Moddel, G. Graphene geometric diodes for terahertz rectennas. Journal of Physics D: Applied Physics 46, 185101, doi:10.1088/0022-3727/46/18/185101 (2013).
    17 Anderson, E. C. & Cola, B. A. Photon-Assisted Tunneling in Carbon Nanotube Optical Rectennas: Characterization and Modeling. ACS Applied Electronic Materials 1, 692-700, doi:10.1021/acsaelm.9b00058 (2019).
    18 Grover, S., Joshi, S. & Moddel, G. Quantum theory of operation for rectenna solar cells. Journal of Physics D: Applied Physics 46, 135106, doi:10.1088/0022-3727/46/13/135106 (2013).
    19 Tucker, J. R. & Feldman, M. J. Quantum detection at millimeter wavelengths. Reviews of Modern Physics 57, 1055-1113, doi:10.1103/RevModPhys.57.1055 (1985).
    20 Belkadi, A., Weerakkody, A. & Moddel, G. Large Errors from Assuming Equivalent DC and High-Frequency Electrical Characteristics in Metal–Multiple-Insulator–Metal Diodes. ACS Photonics 5, 4776-4780, doi:10.1021/acsphotonics.8b01399 (2018).
    21 Miller, O. D. et al. Limits to the Optical Response of Graphene and Two-Dimensional Materials. Nano Letters 17, 5408-5415, doi:10.1021/acs.nanolett.7b02007 (2017).
    22 O'Brien, J. L. Optical Quantum Computing. Science 318, 1567-1570, doi:10.1126/science.1142892 (2007).
    23 Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics 34, 1793-1803, doi:10.1063/1.1702682 (1963).
    24 Simmons, J. G. Low‐Voltage Current‐Voltage Relationship of Tunnel Junctions. Journal of Applied Physics 34, 238-239, doi:10.1063/1.1729081 (1963).
    25 Ang, Y. S., Liang, S.-J. & Ang, L. K. Theoretical modeling of electron emission from graphene. MRS Bulletin 42, 505-510, doi:10.1557/mrs.2017.141 (2017).
    26 Dushman, S. Thermionic Emission. Reviews of Modern Physics 2, 381-476, doi:10.1103/RevModPhys.2.381 (1930).
    27 Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119, 173-181, doi:10.1098/rspa.1928.0091 (1928).
    28 Simmons, J. G. Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics 34, 2581-2590, doi:10.1063/1.1729774 (1963).
    29 Chin, H.-T. et al. Reaction-limited graphene CVD surpasses silicon production rate. 2D Materials 8, 035016, doi:10.1088/2053-1583/abf235 (2021).
    30 De, S. & Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 4, 2713-2720, doi:10.1021/nn100343f (2010).
    31 Cavallo, F. et al. Exceptional Charge Transport Properties of Graphene on Germanium. ACS Nano 8, 10237-10245, doi:10.1021/nn503381m (2014).
    32 Xie, L., Jiao, L. & Dai, H. Selective Etching of Graphene Edges by Hydrogen Plasma. Journal of the American Chemical Society 132, 14751-14753, doi:10.1021/ja107071g (2010).
    33 Zhu, X. et al. Enhanced Light–Matter Interactions in Graphene-Covered Gold Nanovoid Arrays. Nano Letters 13, 4690-4696, doi:10.1021/nl402120t (2013).
    34 Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotechnology 5, 732-736, doi:10.1038/nnano.2010.176 (2010).
    35 Sharma, A., Singh, V., Bougher, T. L. & Cola, B. A. A carbon nanotube optical rectenna. Nature Nanotechnology 10, 1027-1032, doi:10.1038/nnano.2015.220 (2015).
    36 Tizani, L., Abbas, Y., Yassin, A. M., Mohammad, B. & Rezeq, M. d. Single wall carbon nanotube based optical rectenna. RSC Advances 11, 24116-24124, doi:10.1039/D1RA04186J (2021).
    37 Olesen, L. et al. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited. Physical Review Letters 76, 1485-1488, doi:10.1103/PhysRevLett.76.1485 (1996).
    38 Gahoi, A., Kataria, S. & Lemme, M. C. in 2017 47th European Solid-State Device Research Conference (ESSDERC). 110-113.
    39 Beebe, J. M., Kim, B., Gadzuk, J. W., Daniel Frisbie, C. & Kushmerick, J. G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. Physical Review Letters 97, 026801, doi:10.1103/PhysRevLett.97.026801 (2006).
    40 Liu, Y. et al. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. Advanced Materials 28, 4120-4125, doi:doi:10.1002/adma.201506173 (2016).
    41 Yu, Y.-J. et al. Tuning the Graphene Work Function by Electric Field Effect. Nano Letters 9, 3430-3434, doi:10.1021/nl901572a (2009).
    42 Grover, S. & Moddel, G. Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas. IEEE Journal of Photovoltaics 1, 78-83, doi:10.1109/JPHOTOV.2011.2160489 (2011).
    43 Joshi, S. & Moddel, G. Optical rectenna operation: where Maxwell meets Einstein. Journal of Physics D: Applied Physics 49, 265602, doi:10.1088/0022-3727/49/26/265602 (2016).
    44 Dragoman, M., Aldrigo, M., Dinescu, A., Dragoman, D. & Costanzo, A. Towards a terahertz direct receiver based on graphene up to 10 THz. Journal of Applied Physics 115, 044307, doi:10.1063/1.4863305 (2014).
    45 Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters 13, 3664-3670, doi:10.1021/nl401544y (2013).
    46 Nguyen, H.-T., Yen, Z.-L., Su, Y.-H., Hsieh, Y.-P. & Hofmann, M. 2D Material-Enabled Optical Rectennas with Ultrastrong Light-Electron Coupling. Small n/a, 2202199, doi:doi:10.1002/smll.202202199 (2022).
    47 Meidinger, N. et al. Frame store PN-CCD detector for the ROSITA mission. SPIE Astronomical Telescopes + Instrumentation (2003).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE