| 研究生: |
廖原彬 Liao, Yuan-Pin |
|---|---|
| 論文名稱: |
具高規則性十八烷基駢苯衍生物薄膜在高效能n型薄膜電晶體之應用 Regularly ordering N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide films intended for high performance n-type organic thin-film transistors |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 有機薄膜電晶體 、烷基駢苯衍生物 、高分子修飾層 |
| 外文關鍵詞: | perylene derivatives, organic thin-film transistors, polymer insulators |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用自行合成十八烷基駢苯衍生物 (N,N'-dioctadecyl-3,4,9,10- perylene tetracarboxylic diimide, PTCDI-C18H37)作為半導體材料,製作高效能有機薄膜電晶體元件;並與近年來熱門半導體材料十三烷基駢苯衍生物 (PTCDI-C13H27)與辛烷基駢苯衍生物 (PTCDI-C8H17)之元件做電特性比較,再分別針對此三種半導體材料做薄膜分析,以探討不同碳數的烷基駢苯衍生物薄膜的成長機制與薄膜結構的影響。
本實驗分為兩部分,第一部份由於PTCDI-C18H37直接成長在二氧化矽(SiO2)時,PTCDI-C18H37薄膜型態較差,導致元件電特性較差,因此在SiO2與PTCDI-C18H37介面加上交聯聚4-乙基苯酚 (C-PVP)、聚亞醯胺 (Polyimide)與聚甲基丙烯酸甲酯 (PMMA)作為高分子修飾層,可改善PTCDI-C18H37薄膜型態,可獲得較佳的元件電特性。經過實驗發現在PTCDI-C18H37成長在C-PVP上之元件有最佳載子遷移率,可高達1.17 cm2/VS。從AFM、SEM、XRD繞射分析、光激發螢光光譜分析與紫外光-可見光吸收光譜分析可觀察到PTCDI-C18H37成長在C-PVP上亦具有較佳的晶格結構與較易形成二聚物的現象。
第二部分將PTCDI-C18H37、PTCDI-C13H27、PTCDI-C8H17成長在C-PVP上,製造有機薄膜電晶體,實驗發現隨烷基駢苯衍生物的側鏈碳數增加,電性也有較好的趨勢。從AFM、XRD繞射分析、光激發螢光光譜分析與紫外光-可見光吸收光譜分析可觀察到C-PVP上的PTCDI-C18H37垂直島狀結構最明顯與具有較佳的薄膜型態,導致元件特性較佳。
我們成功利用PTCDI-C18H37製作出高效能薄膜電晶體元件,且利用一系列的材料分析,成功了解烷基駢苯衍生物的薄膜型態。
We demonstrated that organic thin film transistors (OTFTs) exhibited high field-effect electron mobility of 1.17 cm2/VS by using polymer insulators and new material, N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18H37). We also compared them with OTFTs based on N,N'-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27) and (N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8H17). And we also studied the structural properties of perylene derivatives grown on SiO2 and polymer insulators.
The study was divided into two parts, in the first part we studied the influence of surface properties of PTCDI-C18H37 grown on bare SiO2 and polymer insulators. The polymer insulators was used as a modification layer upon SiO2, including Cross-Linked poly(4-vinylphenol) (C-PVP), Polyimide (PI), and polymethylmethacrylate (PMMA). We find out the grain size of PTCDI-C18H37 films deposited on bare SiO2 was smaller than polymer insulators. Because smaller grain size exhibited the lower mobility. So the devices modified with polymer insulators exhibited higher mobilities, Subthreshold Swing, and on-off ratios than did the devices fabricated on the bare SiO2. In particular, we found that the devices modified with C-PVP exhibited higher mobility than did the bare SiO2 and those modified with PI and PMMA. We have demonstrated high mobility of 1.17 cm2/VS when the device modified with C-PVP.
A series of PTCDI-C18H37 films deposited on bare SiO2 and polymer insulators have been investigated using Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), UV-Vis Absorption Spectrometry, Scanning Electron Microscope (SEM), and Photoluminescence (PL).We found that PTCDI-C18H37 film deposited on C-PVP has largest grain size and surface morphology. It is also easy to be dimer type.
In the second part We also compared them with OTFTs based on PTCDI-C13H27 and PTCDI-C8H17. The result that the devices based on PTCDI-C18H37 exhibited higher mobility than did the devices based on PTCDI-C13H27 and PTCDI-C8H17. We found that the devices based on PTCDI-C18H37 attain much higher mobility because some larger isolated crystals was found in the PTCDI-C18H37 films.
We have successfully fabricated organic thin film transistors based on PTCDI-C18H37 with a high mobility up to 1.17 cm2/VS.
參考文獻
[1]. D. Kumaki, T. Umeda, S. Tokito, Appl. Phys. Lett. 92, 093309 (2008).
[2]. G. Guillaud, M. A. Sadound, M. Maitrot, Chem. Phys. Lett. 167, 503 (1990).
[3]. J. Kastner, J. Paloheimo, H. Kuzmany, Science, 113, 512 (1993).
[4]. A. R. Brown, D. M. de leeuw, E. J. Lous, E. E. Havingga, Synth. Met. 66, 257 (1994).
[5]. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
[6]. G. Horowitz, F. KouKi, P. Spearman, D. Fichou, C. Nogues, X. Pan, F. Garnier, Adv. Mater 8, 242 (1996).
[7]. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 118, 11331 (1996).
[8]. J. R. Ostrick, A. Dondabalapur, L. Torsi, A. J. Lovinger, E. W. Lwol, T. M. Miller, J. Appl. Phys. 81, 6804 (1997).
[9]. Z. Bao, A. J. Lovunger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
[10]. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 404, 478 (2000).
[11]. A Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 39, 4547 (2000).
[12]. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Adv. Mater. 4, 371 (2003).
[13]. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B. 108, 19281 (2004).
[14]. S. Tatermichi, M. Ichikawa, T. Koyama, Y. Taniguchi, Appl. Phys. Lett. 89, 112108 (2006).
[15]. J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, Appl. Phys. Lett. 91, 212107 (2007).
[16]. S. Hutter, M. Sommer, M. Thelakkat, Appl. Phys. Lett. 92, 093302 (2008).
[17]. Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, D. Zhu, J. Mater. Chem. 20, 1203 (2009).
[18]. 黃銘湧,具不同烷基駢苯衍生物之有機薄膜電晶體特性研究,國立成功大學碩士論文 (2007).
[19].林益生,以烷基駢苯衍生物作為主動層之有機薄膜電晶體,國立成功大學碩士論文 (2008).
[20]. K. Vasseur, C. Rolin, S. Vandezande, K. Temst, L. Froyen, P. Heremans, J. Phys. Chem. C. 114, 2730 (2010).
[21]. C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, R. Muller, J. Genoe, P. Heremans, Appl. Phys. Lett. 93, 033305 (2008).
[22]. W. Y. Chou, M. H. Chang, H. L. Cheng, S. P. Yu, Y. C. Lee, C. Y. Chiu, C. Y. Lee, D. Y. Shu, Appl. Phys. Lett. 96, 083305 (2010).
[23]. T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, J. Major, V. Dehm, F. Würthner, H. Dosch, J. Phys. Chem. C 113, 4502 (2009).
[24]. 陳令妮,PTCDI-C8H17 薄膜之磊晶機制,國立成功大學碩士論文 (2009).
[25]. 林士廷,有機發光二極體光源之偏極化研究,國立成功大學碩士論文 (2004).
[26]. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 16, 4436 (2004).
[27]. D. R. T. Zahn, T. U. Kampen, H. Méndez, Appl. Surf. Sci. 423, 212 (2003).
[28]. F. C. Chen, C. H. Liao, Appl. Phys. Lett. 93, 103310 (2008).
[29]. Y. Wen, Y. Liu, C. Di, Y. Wang, X. Sun, Y. Guo, J. Zheng, W. Wu, S. Ye, G. Yu, Adv. Mater. 21, 1631 (2009).
[30]. R. Schmidt, J. H. Oh, Y. S. Sun, M. Deppisch, A. M. Krause, K. Radacki, H. Braunschweig, M. Knemann, P. Erk, Z. Bao, F. W. 131, 6215 (2009).
[31]. M. M. Ling, P. Erk, M. Gomez, M. Koenemann, J. Locklin, Z. Bao, Adv. Mater. 19, 1123 (2007).
[32]. 孫伯元,以五環素烷基駢苯衍生物為主動層之互補式金屬氧化半導體元件,國立成功大學碩士論文 (2009).
[33]. Z. Bao, A. J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).
[34]. S. Verlaak, W. Arkhipov, P. Heremans, Appl. Phys. Lett. 82, 745 (2003).