簡易檢索 / 詳目顯示

研究生: 廖原彬
Liao, Yuan-Pin
論文名稱: 具高規則性十八烷基駢苯衍生物薄膜在高效能n型薄膜電晶體之應用
Regularly ordering N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide films intended for high performance n-type organic thin-film transistors
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機薄膜電晶體烷基駢苯衍生物高分子修飾層
外文關鍵詞: perylene derivatives, organic thin-film transistors, polymer insulators
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用自行合成十八烷基駢苯衍生物 (N,N'-dioctadecyl-3,4,9,10- perylene tetracarboxylic diimide, PTCDI-C18H37)作為半導體材料,製作高效能有機薄膜電晶體元件;並與近年來熱門半導體材料十三烷基駢苯衍生物 (PTCDI-C13H27)與辛烷基駢苯衍生物 (PTCDI-C8H17)之元件做電特性比較,再分別針對此三種半導體材料做薄膜分析,以探討不同碳數的烷基駢苯衍生物薄膜的成長機制與薄膜結構的影響。
    本實驗分為兩部分,第一部份由於PTCDI-C18H37直接成長在二氧化矽(SiO2)時,PTCDI-C18H37薄膜型態較差,導致元件電特性較差,因此在SiO2與PTCDI-C18H37介面加上交聯聚4-乙基苯酚 (C-PVP)、聚亞醯胺 (Polyimide)與聚甲基丙烯酸甲酯 (PMMA)作為高分子修飾層,可改善PTCDI-C18H37薄膜型態,可獲得較佳的元件電特性。經過實驗發現在PTCDI-C18H37成長在C-PVP上之元件有最佳載子遷移率,可高達1.17 cm2/VS。從AFM、SEM、XRD繞射分析、光激發螢光光譜分析與紫外光-可見光吸收光譜分析可觀察到PTCDI-C18H37成長在C-PVP上亦具有較佳的晶格結構與較易形成二聚物的現象。
    第二部分將PTCDI-C18H37、PTCDI-C13H27、PTCDI-C8H17成長在C-PVP上,製造有機薄膜電晶體,實驗發現隨烷基駢苯衍生物的側鏈碳數增加,電性也有較好的趨勢。從AFM、XRD繞射分析、光激發螢光光譜分析與紫外光-可見光吸收光譜分析可觀察到C-PVP上的PTCDI-C18H37垂直島狀結構最明顯與具有較佳的薄膜型態,導致元件特性較佳。
    我們成功利用PTCDI-C18H37製作出高效能薄膜電晶體元件,且利用一系列的材料分析,成功了解烷基駢苯衍生物的薄膜型態。

    We demonstrated that organic thin film transistors (OTFTs) exhibited high field-effect electron mobility of 1.17 cm2/VS by using polymer insulators and new material, N,N'-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18H37). We also compared them with OTFTs based on N,N'-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27) and (N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8H17). And we also studied the structural properties of perylene derivatives grown on SiO2 and polymer insulators.
    The study was divided into two parts, in the first part we studied the influence of surface properties of PTCDI-C18H37 grown on bare SiO2 and polymer insulators. The polymer insulators was used as a modification layer upon SiO2, including Cross-Linked poly(4-vinylphenol) (C-PVP), Polyimide (PI), and polymethylmethacrylate (PMMA). We find out the grain size of PTCDI-C18H37 films deposited on bare SiO2 was smaller than polymer insulators. Because smaller grain size exhibited the lower mobility. So the devices modified with polymer insulators exhibited higher mobilities, Subthreshold Swing, and on-off ratios than did the devices fabricated on the bare SiO2. In particular, we found that the devices modified with C-PVP exhibited higher mobility than did the bare SiO2 and those modified with PI and PMMA. We have demonstrated high mobility of 1.17 cm2/VS when the device modified with C-PVP.
    A series of PTCDI-C18H37 films deposited on bare SiO2 and polymer insulators have been investigated using Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), UV-Vis Absorption Spectrometry, Scanning Electron Microscope (SEM), and Photoluminescence (PL).We found that PTCDI-C18H37 film deposited on C-PVP has largest grain size and surface morphology. It is also easy to be dimer type.
    In the second part We also compared them with OTFTs based on PTCDI-C13H27 and PTCDI-C8H17. The result that the devices based on PTCDI-C18H37 exhibited higher mobility than did the devices based on PTCDI-C13H27 and PTCDI-C8H17. We found that the devices based on PTCDI-C18H37 attain much higher mobility because some larger isolated crystals was found in the PTCDI-C18H37 films.
    We have successfully fabricated organic thin film transistors based on PTCDI-C18H37 with a high mobility up to 1.17 cm2/VS.

    目次 中文摘要 I ABSTRACT III 致謝 VI 目次 VII 表目錄 XII 圖目錄 XIV 第一章 簡介 1 1.1 有機半導體簡介 1 1.2 研究動機 3 第二章 有機電晶體原理 7 2.1 有機薄膜電晶體 7 2.1.1有機薄膜電晶體的基本構造 7 2.2有機薄膜電晶體的載子傳輸及電晶體操作原理 9 2.2.1 有機薄膜電晶體的載子傳輸 9 2.2.2 有機薄膜電晶體的操作原理[26] 9 2.3 有機薄膜電晶體量測 11 2.3.1 前言 11 2.3.2 載子遷移率 (mobility, m) 11 2.3.3 臨界電壓定義 (Threshold Voltage, VT) 12 2.3.4 次臨界擺幅 (Subthreshold Swing,S.S.) 12 2.3.5 電流開關比 (On/Off ratio) 12 第三章 烷基駢苯衍生物材料合成、有機薄膜電晶體製程及分析方法 19 3.1 前言 19 3.2 有機化合物合成技術、高分子修飾層調配 20 3.2.1 有機化合物合成技術 20 3.2.2 高分子修飾層調配 21 3.3 有機薄膜電晶體製作 23 3.3.1 基板切割及清洗 23 3.3.2 半導體元件製程及技術 24 3.4 分析儀器 26 3.4.1 X-Ray繞射量測系統 (X-Ray Diffraction, XRD) 26 3.4.2 原子力顯微鏡 (Atomic Force Microscope, AFM) 27 3.4.3 紫外光-可見光吸收光譜 (UV-Vis Absorption Spectrometry ) 28 3.4.4 光激發螢光(Photoluminescence, PL) 29 3.4.5 掃瞄式電子顯微鏡(Scanning electron microscope, SEM) 30 第四章 不同高分子修飾層對於十八烷基駢苯衍生物薄膜之研究 45 4.1 前言 45 4.2 不同高分子修飾層對半導體層PTCDI-C18H37材料分析 46 4.2.1 元件材料 46 4.2.2 元件製程 46 4.2.3 原子力顯微鏡(AFM)結果與分析 47 4.2.4 掃描式電子顯微鏡(SEM)結果與分析 48 4.2.5 X-Ray繞射(X-Ray Diffraction)分析 48 4.2.6 光激發螢光(PL)光譜分析 50 4.2.7 紫外光-可見光吸收(UV-Vis Absorption)光譜分析 52 4.3 PTCDI-C18H37成長在不同高分子修飾層上之有機薄膜電晶體電特性分析 54 4.3.1 前言 54 4.3.2 元件材料 54 4.3.3 元件製程 55 4.3.4 電特性量測分析 55 4.4 PTCDI-C18H37成長在不同高分子修飾層上之薄膜結構及電特性關係探討 57 第五章 交聯聚4-乙基苯酚對於不同烷基駢苯衍生物薄膜之研究 75 5.1 前言 75 5.2 高分子介電修飾層C-PVP對烷基駢苯衍生物不同材料分析 76 5.2.1 元件材料 76 5.2.2 元件製程 76 5.2.3原子力顯微鏡(AFM)結果與分析 77 5.2.4 X-Ray繞射(X-Ray Diffraction)分析 78 5.2.5 光激發螢光(PL)光譜分析 79 5.2.6 紫外光-可見光吸收(UV-Vis Absorption)光譜分析 80 5.3 PTCDI-C18H37、PTCDI-C13H27與PTCDI-C8H17成長在C-PVP高分子修飾層上之有機薄膜電晶體電特性分析 81 5.3.1 前言 81 5.3.2 元件材料 81 5.3.3元件製程 82 5.3.4 電特性量測分析 82 5.4 PTCDI-C18H37、PTCDI-C13H27與PTCDI-C8H17成長在C-PVP高分子修飾層上之薄膜結構及電特性關係探討 83 第六章 結論與未來研究方向 93 6.1 總結 93 6.2 未來研究方向 95 參考文獻 97

    參考文獻

    [1]. D. Kumaki, T. Umeda, S. Tokito, Appl. Phys. Lett. 92, 093309 (2008).
    [2]. G. Guillaud, M. A. Sadound, M. Maitrot, Chem. Phys. Lett. 167, 503 (1990).
    [3]. J. Kastner, J. Paloheimo, H. Kuzmany, Science, 113, 512 (1993).
    [4]. A. R. Brown, D. M. de leeuw, E. J. Lous, E. E. Havingga, Synth. Met. 66, 257 (1994).
    [5]. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
    [6]. G. Horowitz, F. KouKi, P. Spearman, D. Fichou, C. Nogues, X. Pan, F. Garnier, Adv. Mater 8, 242 (1996).
    [7]. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 118, 11331 (1996).
    [8]. J. R. Ostrick, A. Dondabalapur, L. Torsi, A. J. Lovinger, E. W. Lwol, T. M. Miller, J. Appl. Phys. 81, 6804 (1997).
    [9]. Z. Bao, A. J. Lovunger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998).
    [10]. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 404, 478 (2000).
    [11]. A Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 39, 4547 (2000).
    [12]. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Adv. Mater. 4, 371 (2003).
    [13]. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B. 108, 19281 (2004).
    [14]. S. Tatermichi, M. Ichikawa, T. Koyama, Y. Taniguchi, Appl. Phys. Lett. 89, 112108 (2006).
    [15]. J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, Appl. Phys. Lett. 91, 212107 (2007).
    [16]. S. Hutter, M. Sommer, M. Thelakkat, Appl. Phys. Lett. 92, 093302 (2008).
    [17]. Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, D. Zhu, J. Mater. Chem. 20, 1203 (2009).
    [18]. 黃銘湧,具不同烷基駢苯衍生物之有機薄膜電晶體特性研究,國立成功大學碩士論文 (2007).
    [19].林益生,以烷基駢苯衍生物作為主動層之有機薄膜電晶體,國立成功大學碩士論文 (2008).
    [20]. K. Vasseur, C. Rolin, S. Vandezande, K. Temst, L. Froyen, P. Heremans, J. Phys. Chem. C. 114, 2730 (2010).
    [21]. C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, R. Muller, J. Genoe, P. Heremans, Appl. Phys. Lett. 93, 033305 (2008).
    [22]. W. Y. Chou, M. H. Chang, H. L. Cheng, S. P. Yu, Y. C. Lee, C. Y. Chiu, C. Y. Lee, D. Y. Shu, Appl. Phys. Lett. 96, 083305 (2010).
    [23]. T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, J. Major, V. Dehm, F. Würthner, H. Dosch, J. Phys. Chem. C 113, 4502 (2009).
    [24]. 陳令妮,PTCDI-C8H17 薄膜之磊晶機制,國立成功大學碩士論文 (2009).
    [25]. 林士廷,有機發光二極體光源之偏極化研究,國立成功大學碩士論文 (2004).
    [26]. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 16, 4436 (2004).
    [27]. D. R. T. Zahn, T. U. Kampen, H. Méndez, Appl. Surf. Sci. 423, 212 (2003).
    [28]. F. C. Chen, C. H. Liao, Appl. Phys. Lett. 93, 103310 (2008).
    [29]. Y. Wen, Y. Liu, C. Di, Y. Wang, X. Sun, Y. Guo, J. Zheng, W. Wu, S. Ye, G. Yu, Adv. Mater. 21, 1631 (2009).
    [30]. R. Schmidt, J. H. Oh, Y. S. Sun, M. Deppisch, A. M. Krause, K. Radacki, H. Braunschweig, M. Knemann, P. Erk, Z. Bao, F. W. 131, 6215 (2009).
    [31]. M. M. Ling, P. Erk, M. Gomez, M. Koenemann, J. Locklin, Z. Bao, Adv. Mater. 19, 1123 (2007).
    [32]. 孫伯元,以五環素烷基駢苯衍生物為主動層之互補式金屬氧化半導體元件,國立成功大學碩士論文 (2009).
    [33]. Z. Bao, A. J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).
    [34]. S. Verlaak, W. Arkhipov, P. Heremans, Appl. Phys. Lett. 82, 745 (2003).

    下載圖示 校內:2015-08-16公開
    校外:2015-08-16公開
    QR CODE