簡易檢索 / 詳目顯示

研究生: 吳鴻程
Wu, Horng-Cherng
論文名稱: 神經壞死病毒複製及死亡蛋白α誘發細胞死亡之分子機制
Molecular cell death mechanism in RGNNV infection: viral RNA replication and death protein α
指導教授: 吳金洌
Wu, Jen-Leih
共同指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 神經壞死病毒細胞凋亡後凋亡細胞壞死粒線體膜電位干擾性RNA蛋白αRNA複製
外文關鍵詞: nervous necrosis virus, apoptosis, post-apoptotic necrosis, mitochondrial membrane potential, siRNA, protein α, RNA replication
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石斑魚神經壞死病毒TN-1病毒株是從台灣病石斑魚體離出來,在分類上是屬於結病毒科,魚類結病毒屬,會感染許多高經濟魚種之稚幼魚,在石斑魚卵孵化後十幾天到吋苗期間,其死亡率可高達100%,造成水產養殖業重大的經濟損失。凋亡是細胞受到外界各式刺激而反應的自殺性死亡方式。在高等生物發育過程中,凋亡是經由基因調控,有秩序的淘汰贅餘細胞。當外來傷害刺激,如:放射線傷害、病毒感染或是致癌基因,也會誘發凋亡,將受損細胞清除,以保護生物體的安全。本篇論文主要目的是探討神經壞死病毒之死亡蛋白α和病毒基因體複製誘發細胞死亡的分子機制。本篇論文分為二部份:(1)確定死亡蛋白α誘發宿主細胞死亡途徑與(2)研究病毒基因體複製與誘發宿主細胞死亡的關係。
    論文第一部份研究顯示,神經壞死病毒死亡蛋白α能誘發石斑魚GF-1細胞進行凋亡及後凋亡細胞壞死現象(第二章)。經由Annexin-Ⅴ染色及TUNEL分析,證實死亡蛋白α所誘導之早期及中期的細胞凋亡特徵。以吖啶橙(Acridine orange)和溴化乙錠(Ethidium bromide)進行複染,證實蛋白α 誘導的後凋亡細胞壞死現象。死亡蛋白α亦會促使粒線體膜電位流失,進而造成細胞色素(cytochrome) c從粒線體釋出至細胞質,因而證實蛋白α 與粒線體功能之消失有關。抗凋亡蛋白zfBcl-xL能抑制蛋白α引發的粒線體膜電位流失,然而若以RNA干擾技術減少病毒死亡蛋白α表現,只能部份抑制病毒誘發之細胞凋亡現象。
    論文第二部份研究神經壞死病毒誘發細胞凋亡,需要新合作蛋白的參與(第三章)。當以紫外線照射病毒,破壞病毒複製能力後,若只有病毒顆粒吸附在細胞表面,無法誘發細胞凋亡現象,證明神經壞死病毒誘發細胞凋亡不是經由外在接受器誘發凋亡的途徑。以RNA干擾技術減少病毒RNA複製酶(蛋白質A)表現,可抑制病毒基因體複製及死亡蛋白α及B2的表現,進而抑制細胞凋亡及粒線體死亡訊息傳導,增加細胞病毒感染後的存活率。綜合所述,神經壞死病毒誘發粒線體失調的凋亡現象,是經由內部誘發途徑,且必需經由病毒基因體複製及死亡蛋白基因表現。本論文藉由探討死亡蛋白α和病毒基因體複製誘發細胞死亡的分子機制,對神經壞死病毒有更寛廣的瞭解,希望末來能應用於該病毒的檢測、防疫及治療,為台灣水產養殖業,略盡微薄心力。

    The red spotted grouper nervous necrosis virus (RGNNV) TN1 strain was isolated from grouper in Taiwan. RGNNV belongs to betanodavirus, and it predominantly infects a wide variety of larval and juvenile marine fish species in worldwide, causing severe morbidity and mortality and significant economic losses to the aquaculture industry. Apoptosis is a suicidal process whereby individual cells of multicellular organisms in response to a wide variety of stimuli. The process is genetically controlled and preprogrammed to eliminate redundant cells during development, and is used as an emergency response following radiation damage, viral infection, or aberrant cell growth induced by oncogenes. The aim of this dissertation is to study the molecular cell death mechanism induced by RGNNV infection. Two parts of studies are included: (1) to identify viral death inducer proteinα induced cell death mechanism, and (2) to identify why RGNNV replication is required for triggering host cell death.
    The first part of this dissertation showed that protein α can induce apoptosis and post-apoptotic necrosis in GF-1 cells (in chapter 2). Apoptotic features were identified either by Annexing V-FLUOS staining or by TUNEL assay, and then post-apoptotic necrotic cells were identified by alcidine orange/anthodium bromide dual dye staining. Further, protein α induced progressive loss of mitochondrial membrane potential (MMP) that its death is correlated with cytochrome c release and blocked by anti-apoptotic protein zfBcl-xL in GF-1 cells. Furthermore, the knockdown of protein α expression by its specific siRNA partially inhibited necrotic cell death with RGNNV infection.
    In second part, we proposed that the newly synthesized protein-dependent pathway is required for RGNNV-induced cell death (in chapter 3). First, UV irradiation of the virus could effectively block viral replication and cell death that RGNNV-induced cellular death is required some death factors for triggering this death pathway. Then, we try to block protein A expression by its specific siRNA, in the results of knockdown of protein A, completely blocked viral genomic replication and blocked the expression of the viral death inducers including proteins α and B2 which is correlated to prevent the phosphatidylserine exposure, mitochondria-mediated death signaling, and enhancing cellular viability. Our results suggest that RGNNV-induced necrotic cell death is via newly synthesized protein dependent-pathway such as viral death inducers protein α and protein B2 for triggering mitochondria-mediated death pathway, but caspase-independent pathway. These findings may provide new insights into RNA virus-induced host pathogenesis and clinical treatment.

    Abstract I 中文摘要 III Acknowledgement V Contents VI Abbreviation List X Chapter 1 Overview introduction 1 1.1 Nervous necrosis virus (NNV) 2 1.1.1 History of viral nervous necrosis disease 2 1.1.2 Geographic and Species distribution 3 1.1.3 Clinical signs 3 1.1.4 Histopathology 4 1.1.5 The Molecular biology of NNV 4 1.1.6 Taxonomy of NNV 5 1.2 Cell death 5 1.2.1 Apoptosis 7 1.2.2 Necrosis 9 1.3 Objective and Specific aims 13 1.4 Figures 16 Figure 1.1 Schematic models of pathways leading to cell death 16 Figure 1.2. Pathways and markers of necrosis and apoptosis (Adapted from ref. 22). 17 Figure 1.3. Three major apoptotic pathways (Adapted from ref. 27). 17 Figure 1.4. Extrinsic and intrinsic apoptotic pathways (Adapted from ref. 31) 18 Figure 1.5. Signal transduction cascades leading to necrotic cell death and the role of RIP1 (Adapted from ref. 41) 18 Figure 1.6. Phase-contrast fluorescence image of RGNNV TN1-infected GL-av cells. 19 Chapter 2 Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein α-induced mitochondria-mediated secondary necrosis cell death 20 Abstract 21 2.1 Introduction 22 2.2 Materials and methods 24 2.2.1 Cell culture and reagents 24 2.2.2 Cloning of RNA2 and construction of expression vector 24 2.2.3 Western blot analysis 25 2.2.4 Apoptotic cells and secondary necrotic cells assay 26 2.2.5 Evaluation of MMP 28 2.2.6 Preparation of mitochondria from RGNNV RNA2-transfected cells 28 2.2.7 Cell counts and statistical analyses 29 2.2.8 Caspase activity assays 29 2.2.9 Construction and selection of GF-1 cells expressing RGNNV RNA2-specific siRNA 30 2.3 Results 32 2.3.1 Cloning of RGNNV RNA2 32 2.3.2 Viral protein expression in GF-1 cells 32 2.3.3 Influence of protein α on post-apoptotic necrosis cell death 32 2.3.4 Influence of protein α on GF-1 MMP and cytochrome c release 33 2.3.5 Effect of anti-apoptotic protein zfBcl-xL on protein α-induced loss of GF-1 MMP 34 2.3.6 Knockdown of protein α by siRNA partially inhibited necrotic cell death following RGNNV infection 35 2.4 Discussion 37 2.5 Tables and figures 39 Table 2.1. The siRNA sequences are sense strand of RNA2 in this study 39 Table 2.2. The influence of viral titers with knockdown of RNA2 by Its specific siRNA at different post-infection timea 39 Figure 2.1. Identification of viral protein expression in GF-1 cells. 41 Figure 2.2. Identification of RGNNV RNA2 induces apoptotic and post-apoptotic necrosis in GF-1 cells. 44 Figure 2.3 RGNNV RNA2-transfection induces loss of MMP in GF-1 cells. 46 Figure 2.4. Anti-apoptotic protein zfBcl-xL blocks RNA2-induced loss of MMP in GF-1 cells. 48 Figure 2.5. Effect of protein α knockdown by siRNA on the necrotic cell death. 49 Chapter 3 RGNNV induces mitochondria-mediated cell death via newly synthesized protein-dependent pathway in fish cells 50 Abstract 51 3.1 Introduction 52 3.2 Materials and Methods 55 3.2.1 Cell line and virus 55 3.2.2 UV-irradiated virus 55 3.2.3 Cloning and sequence analysis of NNV RNA1 55 3.2.4 Expression of recombinant protein A 56 3.2.5 Preparation of a polyclonal antibody against protein A 57 3.2.6 Identification of RGNNV protein A by immunostaining 58 3.2.7 Construction and selection of GF-1 cells expressing RGNNV RNA1-specific siRNA 58 3.2.8 Total mRNA preparation 59 3.2.9 Northern blot analysis 60 3.2.10 Reverse transcriptase-polymerase chain reaction 60 3.2.11 Western blot analyses 60 3.2.12 Annexin-V–FLUOS staining 61 3.2.13 Quantification of cell viability 61 3.2.14 Evaluation of mitochondrial membrane potential 62 3.2.15 Preparation of mitochondrial cytochrome c 62 3.2.16 Caspase-3 activation assay 63 3.2.17 Cell counts and statistical analyses 63 3.2.18 Dual staining of necrotic cells by ethidium bromide and acridine orange dyes 63 3.3 Results 65 3.3.1 RGNNV-induced necrotic cell death is via a newly synthesized viral proteins dependent pathway 65 3.3.2 Cloning of protein A and its localization 66 3.3.3 Knockdown of RdRp by siRNA can block viral RNA replication and viral protein expression for reducing host cell death 67 3.3.4 Reduced viral proteins effectively prevents mitochondria-mediated necrotic cell death 68 3.4 Discussion 70 3.5 Tables and figures 72 Table 3.1. The siRNA sequences are sense strand of RNA1 in this study 72 Table 3.2. The siRNA and actin sequence primers for stable expressing RNA1 siRNA. 72 Table 3.3. The influence of viral titers with knockdown of protein A by its specific siRNA at different post-infection timea 72 Figure 3.1. Effects of UV irradiation of RGNNV on RNA replication in fish cells. 74 Figure 3.2. Cloning and localization of RGNNV protein A in fish liver cells. 77 Figure 3.3. Identification of RNA1-specific siRNA-producing cell lines. 79 Figure 3.4. Effect of protein A expression on viral RNA replication and viral protein expression. 80 Figure 3.5. Blockage of viral protein expression via knockdown of protein A can prevent necrotic cell death and enhance cellular viability. 82 Figure 3.6. Influence of viral protein expression on mitochondria-mediated cytochrome c release 84 Chapter 4 Conclusion and future perspectives 85 4.1 Conclusion 86 4.2 Future perspectives: 87 4.2.1 siRNA therapy of viral nervous necrosis 87 4.2.2 The down-stream factors of RGNNV induced mitochondria-mediated cell death 87 References 89 Publications 101

    [1] Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I. Properties of a new virus belong to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 1992;187:368-71.
    [2] Chi SC, Lo CF, Kou GH, Chang PS, Peng SE, Chen SN. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J Fish Dis 1997;20:185-93.
    [3] Munday BL, Langdon JS, Hyatt A, Humphrey JD. Mass mortality associated with a viral-induced vacuolating encephalopathy and retinopathy of larval and juvenile barramundi, Lates calcarifer Bloch. Aquaculture 1992;103:197-211.
    [4] Tanaka S, Takagi M, Miyazaki T. Histopathological studies on viral nervous necrosis of sevenband grouper, Epinephelus septemfasciatus Thunberg, at the grow-out stage. J Fish Dis 2004; 27: 385-99
    [5] Glazebrook JS, Campbell RSF. Diseases of barramundi (Lates calcarifer) in Australia: a review. In: Management of Wild and Cultured Sea Bass/Barramundi Lates calcarifer (ed. by J.W. Copland & D.I. Grey), 1987; p204-206. ACIAR, Canberra.
    [6] Bellance R, Gallet de SAD. L'encephalite virale de loup de mer. Caraibes Medical 1988;2: 105-14.
    [7] Yoshikoshi K, Inoue K. Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). J Fish Dis 1990;13: 69-77.
    [8] Chen SP, Yang HL, Her GM, Lin HY, Jeng MF, Wu JL, Hong JR. Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Virology 2006;347:379-91.
    [9] Gagne N, Johnson SC, Cook-Versloot M, MacKinnon AM, Olivier G. Molecular detection and characterization of nodavirus in several marine fish species from the northeastern Atlantic. Dis Aquat Organ 2004;62:181-9.
    [10] Munday B, Kwang J, Moody N. Betanodavirus infections of teleost fish: a review. J Fish Dis 2002;25:127-42.
    [11] Schneemann A, Reddy V, Johson J. The structural and function of nodavirus particles: a paradigm for understanding chemical biology. Adv Virus Res 1998;50:381-446.
    [12] Delsert C, Morin N, Comps M. A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Arch Virol 1997;142:2359-71.
    [13] Su YC, Wu JL and Hong JR. Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 2009;385: 143-54.
    [14] Chen LJ, Su YC, Hong JR. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 2009 ;385:444-54
    [15] Toffolo V, Negrisolo E, Maltese C, Bovo G, Belvedere P, Colombo L, et al. Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol 2007;43(1):298-308.
    [16] Comps M., Trindade M and Delsert Cl. Investigation of fish encephalitis viruses (FEV) expression in marine fishes using DIG-labelled probes. Aquaculture 1996;143: 113-21
    [17] Nguyen HD, Nakai T and Muroga K. Progression of striped jack nervous necrosis virus (SJNNV) infection in naturally and experimentally infected striped jack Pseudocaranx dentex larvae. Dis Aquat Organ 1996; 24:99-105.
    [18] Houwerzijl EJ, Blom NR, van der Want JJL, Vellenga E , de Wolf JTM. Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 2006;20:1937-42.
    [19] Wyllie AH, Kerr J, Currie A. Cell death: the significance of apoptosis. Int Rev Cytol 1980;68:251-306.
    [20] Schweichel JU and Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 1973;7:253-66.
    [21] Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FKM. Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation. Cell 2009;137:1112-23.
    [22] Cummings BS and Schnellmann RG. Measurement of Cell Death in Mammalian Cells. Current Protocols in Pharmacology 2004: 12.8.1-12.8.22
    [23] Levine B and Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 2004;6:463-77.
    [24] Clarke PG. Apoptosis: from morphological types of cell death to interacting pathways. Trends Pharmacol. Sci. 2002;23:308-9 (author reply 310).
    [25] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-57.
    [26] Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research 2000;45:528-37.
    [27] Gupta S, Agrawal A, Agrawal S, Su H , Gollapudi S. A paradox of immunodeficiency and inflammation in human aging: lessons learned from apoptosis. Immunity & Ageing 2006;3: 1-8
    [28] Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanism. Nature Reviews. Molecular Cell Biology 2001;2: 589-98.
    [29] Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999;17:331-67.
    [30] Thorburn A. Death receptor-induced cell killing. Cellular Signalling 2004;16: 139-144.
    [31] Michael O H. The biochemistry of apoptosis. Nature 2000;407: 770-6
    [32] Lawen A. Apoptosis-an introduction. Bioessays 2003;25:888-96.
    [33] Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell 1995;82:349-52.
    [34] Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC ,Kroemer G. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 2000;19:329-36.
    [35] Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608-18.
    [36] Vanya I. Rasheva A Pedro M. Domingos. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009; 14:996-1007.
    [37] Morishima N, Nakanishi K, Takenouchi H, Shibata T and Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 2002; 277:34287-94.
    [38] Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32: 37-43.
    [39] Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–21.
    [40] Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 2010 ;3:1-8.
    [41] Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica Biophysica Acta 2006;1757:1371-87.
    [42] Upton JW, Kaiser WJ, Mocarski ES. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 2008;283:16966-70.
    [43] Kalai M, Van LG, Berghe TV, Meeus A, Burm W, Saelens X, Vandenabeele P. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ 2002;9:981-94.
    [44] Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 2009;1787:1395-1401.
    [45] Cosi C, Suzuki H, Milani D, Facci L, Menegazzi M, Vantini G, Kanai Y, Skaper SD. Poly(ADP-ribose) polymerase: early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells. J Neurosci Res 1994;39:38-46.
    [46] Chen SP, Wu JL, Su YC and Hong JR. Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 2007;12:1043-60.
    [47] Guo Y, Wei T, Dallmann K, Kwang J. Induction of caspasedependent apoptosis by betanodaviruses GGNNV and demonstration of protein α as an apoptosis inducer. Virology 2003;308:74-82.
    [48] Chipuk JE and Green DR. Do inducers of apoptosis trigger caspase-independent cell death? Nature Rev Mol Cell Biol 2005;6:268-75.
    [49] Wu HC, Chiu CS, Wu JL, Gong HY, Chen MC, Lu MW, Hong JR. Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish Shell Immunol 2008;24: 436-49.
    [50] Newton K, Strasser A. The Bcl-2 family and cell death regulation. Curr Opin Genet Dev 1998;8:68-75.
    [51] Deleo FR. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 2004;9:399-413.
    [52] Majno G, Joris I. Apoptosis, oncosis and necrosis: an overview of cell death. Am J Pathol 1995;146:3-15.
    [53] Van Cruchten S, Van Den Broeck W. Morphological aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31:214-23.
    [54] Hong JR, Wu JL. Molecular regulation of cellular apoptosis by fish infection pancreatic necrosis virus (IPNV) infection. Curr Top Virol 2002;2:151-60.
    [55] Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2001;2:67-71.
    [56] Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922-33.
    [57] Madesh M, Antonsson B, Srinivasula S, Alnemri E, Hajnoczky G. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem 2002;227:5651-9.
    [58] Ferri K, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3:E255-63.
    [59] Ball L, Johnson K. Reverse genetics of nodaviruses. Adv Virus Res 1999;53:229-44.
    [60] Van Regenmorted M, Fauquet C, Bishop D, Carstens E, Estes M, Lemon S, et al. Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. San Diego:Academic Press; 2000.
    [61] Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, Montesi F, et al. Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 1999;63:143-46.
    [62] Comps M, Pepin J, Bonami J. Purification and characterization of two fish encephalitis viruses (FEV) infecting Lates calcarifer and Dicentrarchus labrax. Aquaculture 1994;123:1-10.
    [63] Chen SP, Yang HL, Lin HY, Chen MC, Wu JL, Hong JR. Enhanced viability of a nervous necrosis virus-infected stable cell line over-expressing a fusion product of the zfBcl-xL and green fluorescent protein genes. J Fish Dis 2006;29:347-54.
    [64] Hong JR, Gong HY, Wu JL. IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression. Virology 2002;295:217-29.
    [65] Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
    [66] Kain S, Mai K, Sinai P. Human multiple tissue Western blots: a new immunological tool for the analysis of tissue-specific protein expression. BioTechniques 1994;17:982-7.
    [67] Hong JR, Lin TL, Hsu YL, Wu JL. Apoptosis precedes necrosis of fish cell line by infectious pancreatic necrosis virus. Virology 1998;250:76-84.
    [68] Hong JR, Wu JL. Induction of apoptotic death in cells via Bad gene expression by infectious pancreatic necrosis virus infection. Cell Death Differ 2002;9:113-24.
    [69] Kominsky DJ, Bickel RJ, Tyler KL. Reovirus-induced apoptosis requires both death receptor- and mitochondrial-mediated caspase-dependent pathways of cell death. Cell Death Differ 2002;9:926-33.
    [70] Hong JR, Huang LJ, Wu JL. Fish birnavirus induces apoptosis through activated caspases 8 and 3 in zebrafish cell line. J Fish Dis 2005;28:1-8.
    [71] Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 1998;5:1004-16.
    [72] Gou D, Jin N., Liu L. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS letters 2003 ;548:113-18
    [73] Nishizawa T, Mori K, Furuhashi M, Nakai T, Furusawa I, Muroga K. Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J Gen Virol 1995;76:1563-9.
    [74] Grotmol S, Beerfh O, Totland G. Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis Aquat Organ 1999;36:95-106.
    [75] Nakai T, Nguyen H, Nishizawa T, Muroga K, Arimoto M, Octsuki K. Occurrence of viral nervous necrosis in kelp grouper and tiger puffer. Fish Pathol 1994;29:211-2.
    [76] Jaeschke H, Lemasters J. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 2003;125:1246-57.
    [77] Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004;16:663-9.
    [78] Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific from of programmed cell death? Exp Cell Res2003;283:1-16.
    [79] Andree HAM, Reutelingsperger CPM, Hauptmann R, Hemker HC, Hermens W, Willems G. Binding of vascular anticoagulant a (VACa) to planar phospholipids bilayers. J Biol Chem 1990;265:4923-8.
    [80] Raynal P, Pollard H. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium and phospholipids-binding proteins. Biochim Biophys Acta 1994;1197:63-93.
    [81] Fadok V, Voelker D, Campbell P, Cohen J, Bratton D, Henson P. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148:2207-16.
    [82] Lemasters J. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 1999;276:G1-6.
    [83] Marzo I, Brenner C, Zamzami N, Jurgensmeier J, Susin S, Vieira H, et al. Bax and adenine nucleotide translocator cooperate in mitochondrial control of apoptosis. Science 1998;281:2027-31.
    [84] Narita M, Shimizu S, Ito T, Chittenden T, Leutz RJ, Matsuda H, et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 1998;95:14681-6.
    [85] Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 2001;152:237-50.
    [86] Kim J, Qian T, Lemasters J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 2003;124:494-503.
    [87] Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005;86: 2807-16.
    [88] Chi SC, Hu WW, Lo BJ. Establishment and characterization of a continuous cell line (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 1999;22:173–82.
    [89] Johnson K, Zeddam J, Ball L. Characterization and construction of functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside Australasia. J Virol 2000;74: 5123-32.
    [90] Li H, Li W, Ding S. Induction and Suppression of RNA Silencing by an Animal Virus. Science 2002;296:1319-21.
    [91] Lu R, Maduro M, Li F, Li HW. Broitman-Maduro G, Li WX, Ding SW. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 2005; 436:1040-43.
    [92] Wang X, Aliyari R, Li W, Li H, Kim K, Carthew R, Atkinson P, Ding S. RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science 2006;312:452-54.
    [93] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281: 1322-26.
    [94] Farrow SN, Brown R. New members of the Bcl-2 family and their protein partners. Cur Opin Gene Dev 1996;6:45-9.
    [95] Shen Y, Shenk T. Viruses and apoptosis. Curr Opin Gene Dev 1995;5:105-11.
    [96] Herman B, Nieminen A, Gores G, Lemasters J. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J 1988;2: 146-51.
    [97] Brookes PS, Yoon Y, Robotham J, Anders M, Sheu S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am Physiological Soc 2004;287:817-33.
    [98] Goossens V, Vos K, Vercammen D, Steemans M, Vancompernolle K, Fiers W, Vandenabeele P, Grooten J. Redox regulation of TNF signaling. BioFactors 1999;10: 145-56.
    [99] Dobos P, Hill B, Hallett R, Kells D, Becht H, Teninges D. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. Journal of Virology 1979;32:593-605.
    [100] Malabika, D, Ganguly T, Chattoraj P, Chanda PK, Bandhu A, Lee CY, Sau S. Purification and characterization of repressor of temperate S. aureus phage phi11. J Bichem Mol Biol 2007;40: 740-48.
    [101] Hong J, Hong T, Chang J, Chang T. Production and characterization of monoclonal antibodies against α and β spectrin subunits. J. Formos Med Assoc 1993;92:61-7.
    [102] Mullen PD, Brand RJ, Parlette GN. Evaluation of dye exclusion and colony inhibition techniques for detection of polyoma-specific, cell-mediated immunity. J Natl Cancer Inst 1975;54:229-31.
    [103] Hamilton A, Baulcombe D. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999;286:950-52.
    [104] McCaffrey A, Meuse L, Pham T, Conklin D, Hannon G, Kay M. Gene expression: RNA interference in adult mice. Nature 2002;418:38-39.
    [105] Lu M, Chao Y, Guo T, Santi N, Evensen O, Kasani S, Hong J, Wu J. The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol Immuno. 2008;45:1146-52.
    [106] Poisa-Beiro L, Dios S, Montes A, Aranguren R, Figueras A, Novoa B. Nodavirus increases the expression of Mx and inflammatory cytokines in fish brain. Mol Immunol 2008;45:218-25.
    [107] Gukovskaya A, Vaquero E, Zaninovic V, Gorelick F, Lusis A, Brennan M, Holland S, Pandol S. Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 2002 ;122:974-84.
    [108] Sato A, Hiramoto A, Uchikubo Y, Miyazaki E, Satake A, Naito T, Hiraoka O, Miyake T, Kim HS, Wataya Y. Gene expression profiles of necrosis and apoptosis induced by 5-fluoro-2'-deoxyuridine. Genomics 2008;92:9-17.
    [109] Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J. Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway. Cell 2008;135:1311-23.
    [110] Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer J, Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8? independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000;1:489-95.
    [111] Urban C, Rheme C, Maerz S, Berg B, Pick R, Nitschke R, Borner C. Apoptosis induced by Semliki Forest virus is RNA replication dependent and mediated via Bak. Cell Death Differ. 2008;15:1396-1407.
    [112] Elbashir S, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411 :494-97.
    [113] Kroemer G, Martin S. Caspase-independent cell death. Nature medicine 2005;11:725-30.
    [114] Chi SC, Wu YC, Cheng TM. Persistent infection of betanodavirus in a novel cell line derived from the brain tissue of barramundi Lates calcarifer. Dis Aquat Organ 2005;65:91-8.
    [115] Chang CW and Hong JR. Studies on betanodavirus induces oxidative stress and this stress modulated by viral protein B1 in GF-1 cells, 2008; master thesis).

    無法下載圖示 校內:2015-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE