研究生: |
陳怡伶 Chen, Yi-Ling |
---|---|
論文名稱: |
腫瘤細胞表現Fas ligand促進其皮下腫瘤之生長,但抑制腫瘤細胞轉移至肺臟 Fas ligand expression on tumor enhances tumorigenesis, but suppresses experimental lung metastasis in vivo |
指導教授: |
楊倍昌
Yang, Bei-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 細胞凋亡 、腫瘤 、嗜中性球 、皮下 、肺臟 |
外文關鍵詞: | apoptosis, tumor, neutrophil, lung, scutaneously |
相關次數: | 點閱:72 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fas和Fas ligand (FasL; CD95L; Apo-1L)的結合會誘發部份表現Fas的細胞凋亡(apoptosis)。以前的研究認為腫瘤細胞表現FasL (tumor FasL)以躲避免疫系統的攻擊。但是,腫瘤細胞表現FasL如何影響腫瘤的生長及轉移,至目前仍不清楚。本實驗利用FasL特定的核醣酵素(FasL-specific ribozyme; FasLRibozyme)來抑制FasL基因的表現,並且建立帶有FasL特定的核醣酵素的B16F10黑色素癌細胞株(FasL表現低腫瘤細胞;FasLlow tumor cells;FasLR),應用於皮下腫瘤形成及腫瘤細胞轉移至肺部的動物實驗,分析腫瘤細胞的FasL表現量和腫瘤細胞的生長和轉移之相關性。所建立的FasL表現量高(FasLhigh)和FasL表現量低(FasLlow)細胞株的Fas和腫瘤壞死因子-(tumor necrosis factor-; TNF-的基因表現量並無差異。
當腫瘤細胞株以皮下方式植入小鼠體內,雖然FasL可以促進嗜中性球浸潤及腫瘤細胞的凋亡(apoptosis)。FasL表現量低(FasLlow)細胞株在皮下形成腫瘤的速率比FasL表現量高(FasLhigh)細胞株慢。在缺乏嗜中性球小鼠的體內,FasL表現量低(FasLlow)細胞株的生長顯著大於在正常小鼠體內的生長速率。相對地,FasL表現量高(FasLhigh)細胞株腫瘤的生長,在嗜中性球正常或是缺乏的小鼠體內,並無顯著差異。局部注射脂多醣(LPS)至C57BL/6及NOD/SCID小鼠的腫瘤區域,顯著抑制FasL表現量低(FasLlow)細胞株的生長,而對於FasL表現量高(FasLhigh)細胞株的生長抑制作用較為輕微。
在生體外將腫瘤細胞和嗜中性球一起培養,嗜中性球都能毒殺FasL表現量高(FasLhigh)和FasL表現量低(FasLlow)細胞株。FasL表現量高(FasLhigh)細胞株對於嗜中性球所誘發的細胞凋亡(apoptosis),比FasL表現量低(FasLlow)細胞株具有耐受性。腫瘤細胞表現FasL會抑制嗜中性球的明膠酵素B (gelatinase B)的分泌、氧活性物質(reactive oxygen species; ROS)的產生及CD11b的表現。因此,腫瘤細胞表現FasL導致嗜中性球不活化的作用機制,可能是皮下腫瘤細胞在躲避免疫系統攻擊的原因之一。
如果將腫瘤細胞株以尾靜脈注射至小鼠體內,FasL表現量低(FasLlow)細胞株轉移至肺臟的數目明顯高於FasL表現量高(FasLhigh)細胞株。在腫瘤細胞侵入肺部時,腫瘤細胞表現FasL也能促進嗜中性球浸潤及腫瘤細胞細胞的凋亡(apoptosis)。利用抗體去除小鼠體內的嗜中性球,可以明顯促進FasL表現量高(FasLhigh)和FasL表現量低(FasLlow)細胞株轉移至肺臟。
總之,腫瘤細胞表現Fas-L的確會影響腫瘤的生長,但是其效益會因腫瘤形成的器官或組織而有不同。
Fas (CD95) and Fas ligand interaction induces apoptosis in Fas+ cells of many cell types. The expression of FasL on tumor cells (tumor FasL) has been implicated in evasion of immune surveillance. How Fas-L on tumors affects tumorigenesis and metastasis, however, is not clear. In this study, we have established B16F10 melanoma-derived cells carrying either plasmid encoding FasL specific ribozyme (FasLR; FasLlow tumor cells) or vector plasmid (FasLhigh tumor cells) to investigate the role of Fas-L in tumorigenicity and metastasis. FasLR suppressed the expression of FasL but not Fas or TNF- in B16F10 melanoma cells. When injected subcutaneously into C57BL/6 mice, FasLlow tumor cells grew slowly than did FasLhigh melanoma. FasLhigh tumor cells showed more intensive neutrophilic infiltration accompanied by multiple necrotizing areas than did FasLlow tumor. The average size of FasLlow tumors, but not that of FasLhigh tumors, was significantly enhanced in mice depleted of neutrophils. Consistently, a local injection of LPS to recruit/activate neutrophils significantly delayed tumor formation of FasLlow tumor cells, and slightly retarded that of FasLhigh tumor cells in both C57BL/6 and NOD/SCID mice.
Neutrophils killed FasLlow melanoma cells more effective than FasLhigh melanoma cells in vitro. The resistance of FasLhigh melanoma cells to being killed by neutrophil was correlated with impaired neutrophil activation as demonstrated by reductions in gelantinase B secretion, ROS production, and the surface expression of CD11b and the transcription of FasL. Local transfer of casein-enriched or PMA-treated neutrophils delayed tumor formation by melanoma cells. Thus, inactivation of neutrophils by tumor FasL is an important mechanism by which tumor cells escape immune attack.
On the other hand, suppression of FasL in B16F10 melanoma cells by FasLR enhanced lung metastasis of the cells in C57BL/6 mice, and that was correlated with reductions in both apoptotic tumor cells and granulocytic infiltration. Mice depleted of granulocytes, but not CD4+ and CD8+ cells, showed a greatly elevated susceptibility to lung metastasis. Moreover, apoptosis in tumor cells was significantly reduced in granulocyte-depleted mice during the course of tumor formation.
In summary, FasL on tumors affects tumorigenesis and metastasis, but the effect was diverse in different tissues or organs.
Abreu-Martin, M. T., Vidrich, A., Lynch, D. H. and Targan, S. R. Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J. Immunol., 155: 4147, 1995.
Ajuebor, M. N., Das, A. M., Virag, L., Flower, R. J., Szabo, C. and Perretti, M. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol., 162: 1685, 1999.
Alderson, M. R., Tough, T. W., Davis-Smith, T., Braddy, S., Falk, B., Schooley, K. A., Goodwin, R. G., Smith, C. A., Ramsdell, F. and Lynch, D. H. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med., 181: 71, 1995.
Allison, J., Georgion, H. M., Strasser, A. and Vaux, D. L. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl. Acad. Sci. USA, 94: 3943, 1997.
Arai, H., Chen, S.Y., Bishop, D.K. and Nabel, G.J. Inhibition of the alloantibody response by CD95 ligand. Nature Med., 3: 843, 1997a.
Arai, H., Gordon, D., Nabel E.G. and Nabel, G.J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc. Natl. Acad. Sci. USA, 94: 13862, 1997b.
Awwad, M. and North, R. J. Immunologically mediated regression of a murine lymphoma after treatment with anti-L3T4 antibody. A consequence of removing L3T4+ suppressor T cells from a host generating predominantly Lyt-2+ T cell-mediated immunity. J. Exp. Med., 168: 2193, 1988.
Biancone, L., Martino, A.D., Orlandi, V., Conaldi, P.G., Toniolo, A. and Camussi, G. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med., 186: 147, 1997.
Brodt, P. and Gordon, J. Natural resistance mechanisms may play a role in protection against chemical carcinogenesis. Cancer Immuno. Immunother., 13: 125, 1982.
Burg, G., W., Kempf, D. V., Kazakov, R., Dummer, P. J., Frosch, Lange-Ionescu, S., Nishikawa, T., and Kadin, M. E. Pyogenic lymphoma of the skin: a peculiar variant of primary cutaneous neutrophil-rich CD30+ anaplastic large-cell lymphoma. Clinicopathological study of four cases and review of the literature. Br. J. Dermatol., 148: 580, 2003.
Byrne, S. N., and Halliday, G. M. High levels of Fas ligand and MHC class II in the absence of CD80 or CD86 expression and a decreased CD4+ T cell Infiltration, enables murine skin tumours to progress. Cancer Immunol. Immunother., 52: 396, 2003.
Cameron, F. H. and Jennings, P. A. Specific gene suppression by engineered ribozymes in monkey cells. Proc. Natl. Acad. Sci. USA, 86: 9139, 1989.
Cameron, M.D., Schmidt, E.E., Kerkvliet, N., Nadkarni, V., Morris, V.L., Groom, A.C., Chambers, A.F. and MacDonald, I.C. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res., 60: 2541, 2000.
Carpentier, A.F., Chen, L., Maltonti, F., and Delattre, J.Y. Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res., 59: 5429, 1999.
Cassatella, M. A. The neutrophil: one of the cellular targets of interleukin-10.
Int. J. Clin. Lab. Res., 28: 148, 1998.
Cech, T. R. The chemistry of self-splicing RNA and RNA enzymes. Science, 236: 1532, 1987.
Chen, J., Sun, Y. and Nabel, G.J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science, 282: 1714, 1998.
Chen, Y. L, Wang, J. Y., Chen, S. H. and Yang, B. C. Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour. Br. J. Cancer, 87: 359, 2002.
Chio, C. C., Wang, Y. S., Chen, Y. L., Lin, S. J. and Yang, B. C. Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice. Br. J. Cancer, 85: 1185, 2001.
Cormack, B. P., Valdivia, R. H. and Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173: 33, 1996.
Coussens, L. M., and Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med., 193: F23, 2001.
Coussens, L. M., and Werb, Z. Inflammation and cancer. Nature, 420: 860, 2002.
Daniel, D., Meyer-Morse, N., Bergsland, E. K., Dehne, K., Coussens, L. M., and Hanahan, D. Immune enhancement of skin carcinogenesis by CD4+ T cells. J. Exp. Med., 197: 1017, 2003.
Del Bufalo, D., Biroccio, A., Leonetti, C. and Zupi, G.. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J., 11: 947, 1997.
De Waal Malefyt, R., Yssel, H., Roncarolo, M.G., Spits, de Vries, J.E. Interleukin-10. Curr. Opin. Immunol., 4: 314, 1992.
Dhein, J., Walczak, H., Baumler, C., Debatin, K.M. and Krammer, P.H. Autocrine T-cell suicide mediated by APO-1(Fas/CD95). Nature, 373: 438, 1995.
Di Carlo, E., Forni, G., Lollini, P., Colombo, M.P., Modesti, A., and Musiani, P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97: 339, 2001.
Ding, L., Linsely, P.S., Huang, L.Y., Germain, R.N., Shevach, E.M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J. Immunol., 151: 1224, 1993.
Elder, D.E. Metastatic melanoma. In Pigment Cell (ed. D.E. Elder), pp. 182. Karger, Basel, Switzerland. 1987.
Favre-Felix, N., Fromentin, A., Hammann, A., Solary, E., Martin, F. and Bonnotte, B. Cutting edge: the tumor counterattack hypothesis revisited: colon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway. J. Immunol., 164: 5023, 2000.
Fidler, I. J. Selection of successive tumour lines for metastasis. Nature New. Biol., 242: 148, 1973.
Fidler, I. J., and Ellis, L. M. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell, 79: 185, 1994.
Fidler, I. J. and Nicolson, G. L.Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J. Natl. Cancer Inst., 57: 1199, 1976.
Fidler, I. J., Gersten, D.M. and Hart, I. R. The biology of cancer invasion and metastasis. Adv. Cancer Res., 28: 149,1978a.
Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res., 38: 2651, 1978b.
Gregory, M. S., Repp, A. C., Holhbaum, A. M., Saff, R. R., Marshak-Rothstein, A. and Ksander, B. R. Membrane Fas ligand activates innate immunity and terminates ocular immune privilege. J. Immunol., 169: 2727, 2002.
Gochuico, B.R., Miranda, K. M., Hessel, E. M., De Bie, J. J., Van Oosterhout, A. J., Cruikshank, W. W. and Fine, A. Airway epithelial Fas ligand expression: potential role in modulating bronchial inflammation. Am. J. Physiol., 274: L444, 1998.
Goto, S., Sakai, S., Kera, J., Suma, Y., Soma, G. I. and Takeuchi, S. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol. Immunother., 42: 255, 1996.
Gratas, C., Tohma, Y., VanMeir, E.G., Klein, M., Tenan, M., Ishii, N., Tachibana, O. Kleihues, P. and Ohgaki, H. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol., 7: 863, 1997.
Green, D. R. and Ferguson, T. A. The role of Fas ligand in immune privilege. Nat. Rev. Mol. Cell Biol., 2: 917, 2001.
Gresham, H. D., Ray, C. J. and O'Sullivan, F. X. Defective neutrophil function in the autoimmune mouse strain MRL/lpr. Potential role of transforming growth factor-beta. J. Immunol., 146: 3911, 1991.
Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 270: 1189, 1995a.
Griffith, T.S., Yu, X., Herndon, J.M., Green, D.R. & Ferguson, T.A. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity, 5: 7, 1995b.
Hahne, M., Rimoldi, D., Schroter, M., Romero, P., Schreier, M., French, L.E., Schneider, P., Bornand, T., Fontana, A., Lienard, D., Cerottini, J.C. and Tschopp, J. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science, 274: 1363, 1996.
Hagenbaugh, A., Sharma, S., Dubinett, S. M., Wei, S. H., Aranda, R., Cheroutre, H., Fowell, D. J., Binder, S., Tsao, B., Locksley, R. M., Moore, K. W. and Kronenberg, M. Altered immune responses in interleukin 10 transgenic mice. J. Exp. Med., 185: 2101, 1997.
Hamann, K. J., Dorscheid, D. R., Ko, F. D., Conforti, A. E., Sperling, A. I., Rabe, K. F. and White, S. R. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am. J. Respir. Cell Mol. Biol., 19: 537, 1998.
Hohlbaum, A. M., Gregory, M. S., Ju, S. T. and Marshak-Rothstein, A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol., 167: 6217, 2001.
Hart, I.R., and BVSc. The selection and characterization of an invasive variant of the B16 melanoma. Am. J. Pathol., 97: 587, 1979.
Haseloff, J. and Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature, 334: 585, 1988.
Hill, J. O., Awwad, M. and North, R. J. Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity against Leishmania. J. Exp. Med., 169: 1819, 1989.
Hor, W. S., Huang, W. L., Lin, Y. S., and Yang, B.C. Cross-talk between tumor cells and neutrophils through the Fas (APO-1, CD95)/FasL system: human glioma cells enhance cell viability and stimulate cytokine production in neutrophils. J. Leukoc. Biol., 73: 363, 2003.
Huang, S., Xie, K., Bucana, C.D., Ullrich, S.E. and Bareli, M. Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin. Cancer Res., 2: 1969, 1996.
Huang, S., Ullrich, S.E. and Bar-Eli, M. Regulation of tumor growth and metastasis by interleukin-10: The melanoma experience. J. Interferon Cytokine Res., 19: 697, 1999.
Ibanez, O. M., Mouton, D., Ribeiro, O. G., Bouthillier, Y., De Franco, M., Cabrera, W. H., Siqueira, M. and G. Biozzi. Low antibody responsiveness is found to be associated with resistance to chemical skin tumorigenesis in several lines of Biozzi mice. Cancer Lett., 136: 153, 1999.
Imai, A., Takagi, A., Horibe and Takagi H., Tamaya, T. Evidence for fight compling of gonadotropin-releasing hormone receptor to stimulated Fas ligand expression in reproduction tract tumors: possible mechanism for hormone control of apototic cell death. J. Chin. Endocrinol. Metab., 83: 427, 1998.
Johnson, T. M., Hamilton, T. and Lowe, L. Multiple primary melanomas. J. Am. Acad. Dermatol., 39: 422, 1998.
Ju, D.W., Yang, Y., Tao, Q., Song, W. G., He, L., Chen, G., Gu, S., Ting, C. C., and Cao, X. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of antitumor immunity. Gene Ther., 7: 1672, 2000.
Judge, T.A., Desai, N.M., Yang, Z. Rostami, S., Alonso, L., Zhang, H., Chen Y., Markman, J.F., Demateo, R.P., Barker, C.F., Naji, A. and Turka, L.A. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation, 66: 426, 1998.
Kang, S.M., Schneider, D.B., Lin, Z., Hanahan, D., Dichek, D.A., Stock, P.G. and Baekkeskov, S. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nature Med., 3: 738, 1997.
Kishimoto, T. K., Jutila, M. A., Berg, E. L., and Butcher, E. C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 245: 1238-1241, 1989.
Kobayashi, M., Kobayashi, H., Pollard, R.B. and Suzuki, F. A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J. Immunol., 160: 5869, 1998.
Koh, H. K.Cutaneous melanoma. N. Engl. J. Med., 325: 171, 1991.
Koeppen, H. K., Singh, S., Stauss, H. J., Park, B. H., Rowley, D. A. and H. Schreiber. CD4-positive and B lymphocytes in transplantation immunity. I. Promotion of tumor allograft rejection through elimination of CD4-positive lymphocytes. Transplantation, 55: 1349, 1993.
Krammer, P. H., Behrmann, I., Daniel, P., Dhein, J. and Debatin, K. M. Regulation of apoptosis in the immune system. Curr. Opin. Immunol., 6: 279, 1994.
Lichtenstein, A., Seelig, M., Berek, J. and Zighelboim, J. Human neutrophil-mediated lysis of ovarian cancer cells. Blood, 74: 805, 1989.
Lin, E. Y., Nguyen, A. V., Russell, R.G., and Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med., 193: 727, 2001.
Leu, J. I., Crissey, M. A., and Taub, R. Massive hepatic apoptosis associated with TGF-beta1 activation after Fas ligand treatment of IGF binding protein-1-deficient mice. J. Clin. Invest., 111: 129, 2003.
Lowrance, J. H., O'Sullivan, F. X., Caver, T. E., Waegell, W. and Gresham, H. D. Spontaneous elaboration of transforming growth factor beta suppresses host defense against bacterial infection in autoimmune MRL/lpr mice. J. Exp. Med., 180: 1693, 1994.
Luo, Y., and M. E. Drof. Isolation of mouse neutrophils. Curr. Proc. Immunol., Vol. 3, p. 20.1. 1998.
Maeda, K., Lafreniere, R., and Jerry, L. M. Production and characterization of tumor infiltrating lymphocyte clones derived from B16-F10 murine melanoma. J. Invest. Dermatol. 97: 183, 1991.
Manson, L. A. Anti-tumor immune responses of the tumor-bearing host: the case for antibody-mediated immunologic enhancement. Clin. Immunol. Immunopathol., 72: 1, 1994.
McCourt, M., Wang, J.H., Sookhai, S. and Redmond, H.P. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch. Surg., 134: 1325, 1999.
McConkey, D. J., Greene, G. and Pettaway, C. A. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res., 56: 5594, 1996.
McEvoy, L., Schegel, R.A., Williamson, P., and Del Buono, B.J. Merocyanine 540 as a flow cytometric probe of membrane lipid organization in leukocytes. J. Leukocyte Biol., 44: 337, 1988.
Mehrad, B., Strieter, R. M., Moore, T. A., Tsai, W. C., Lira, S. A., and Standiford, T. J. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J. Immunol., 163: 6086, 1999.
Mita, E., Hayashi, N., Iio, S., Takehara, T., Hijioka, T., Kasahara, A., Fusamoto, H. and Kamada, T. Role of Fas ligand in apoptosis induced by hepatitis C virus infection. Biochem. Biophys. Res. Commun., 204: 468, 1994.
Mooney, E.E., Peris, J.M.R., O’Neill, A. and Sweeney, E.C. Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J. Clin. Pathol., 48: 242, 1995.
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. and O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19: 683, 2001.
Monach, P. A., Schreiber, H. and Rowley, D. A. CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation, 55: 1356, 1993.
Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegui, E. and Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50, 2001.
Nagai, H., Hara, I., Horikawa, T., Oka, M., Kamidono, S., and Ichihashi, M. Elimination of CD4(+) T cells enhances anti-tumor effect of locally secreted interleukin-12 on B16 mouse melanoma and induces vitiligo-like coat color alteration. J. Invest. Dermatol., 115: 1059, 2000.
Nagata, S. Fas and Fas ligand: a death factor and its receptor. Adv. Immunol. 57: 129, 1994.
Nagata, S. and Suda, T. Fas and Fas ligand: lpr and gld mutations. Immunol. Today, 16: 39, 1995.
Nataga, S. Apoptosis by death factor. Cell 88: 355, 1997.
Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet., 33: 29, 1999.
Niehans, G.. A., Brunner, T., Frizelle, S. P., Liston, J. C., Salerno, C. T., Knapp, D. J., Green, D. R. and Kratzke, R. A. Human lung carcinomas express Fas ligand. Cancer Res., 57: 1007, 1997.
Nikiforov, M.A., Kwek, S.SS., Mehta, R., Artwohl, J.E., Lowe, S.W., Gupta, T.D., Deichman, G.I. and Gudkov, A.V. Suppression of apoptosis by bcl-2 does not prevent p53-mediated control of experimental metastasis and anchorage dependence. Oncogene, 15: 3007, 1997.
O’Connell, J., O’Sullivan, G.C., Collins, J.K. and Shanahan, F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med., 184: 1075, 1996.
O’connell, J., Bennett, M.W., O’sullivan, G.G., Roche, D., Kelly, J., Collins, J.K. and Shanahan, F. Fas counter-attack the best form of tumor defense? Nature Med., 5: 267, 1999.
Opdenakker, G., Van den Steen, P. E., and Van Damme, J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol., 22: 571, 2001.
Owen-Schaub, L.B., Golen, K.L., Hill, L.L. and Price, J.E. Fas and Fas ligand interactions suppress melanoma lung metastasis. J. Exp. Med., 188: 1717, 1998.
Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev., 8: 98, 1989.
Poste, G., Paruch, L. and Stephen, Paget. A retrospective. Cancer Metastasis Rev., 8: 93, 1989.
Poszepczynska, E., Martinvalet, D., Bouloc, A., Echchakir, H., Wechsler, J., Becherel, P. A., Boumsell, L., Bensussan, A., and Bagot, M. Erythrodermic cutaneous T-cell lymphoma with disseminated pustulosis. Production of high levels of interleukin-8 by tumour cells. Br. J. Dermatol., 144: 1073, 2001.
Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X. and Blankenstein, T. B cells inhibit induction of T cell-dependent tumor immunity. Nature Med., 4: 627, 1998.
Rowley, D. A. and Stach, R. M. B lymphocytes secreting IgG linked to latent transforming growth factor-beta prevent primary cytolytic T lymphocyte responses. Int. Immunol., 10: 355, 1998.
Saas, P., Walker, P.R., Hahne, M., Quiquerez, A.L., Schnuriger, V., Perrin, G., French L, VanMeir, E.G., Tribolet, N.T., Schopp, J. and Dietrich, P.Y. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain ? J. Clin. Invest., 99: 1173, 1997.
Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A. and Rossi, J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science, 247: 1222, 1990.
Scanlon, K. J., Ishida, H., Kashani-Sabet, M. Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc. Natl. Acad. Sci. USA, 91: 11123,1994.
Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., Matsushima, K., and Herlyn, M. Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int. J. Cancer, 103: 335, 2003.
Schuchter, L. M., Green, R. and Fraker, D. Primary and metastatic diseases in malignant melanoma of the gastrointestinal tract. Curr. Opin. Oncol., 12: 181, 2000.
Seino, K-I., Kayagaki, N., Tsukada, N., Fukao, K., Yagita, H. and Okumura, K. Transplantation of CD95 ligand-expressing grafts. Influence of transplanation site and difficulty in protecting allo- and xenigrafts. Transplantation, 64: 1050, 1997.
Seino, K-I., Iwabuchi, K., Kayagaki, N., Miyata, R., Nagaoka, I., Matsuzawa, A., Fukao, K., Yagita, H. and Okumura, K. Chemotactic activity of soluble Fas ligand against phagocytes. J. Immunol., 161: 4484, 1998.
Shiraki, K., Tsuji, N., Shioda, T., Isselbacher, K.J. and Takahashi, H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc. Natl. Acad. Sci. USA, 94: 6420, 1997.
Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Allen, R., Sidman, C., Proetzel, G. and Calvin, D.Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 359: 693, 1992.
Sioud, M. Interaction between tumour necrosis factor alpha ribozyme and cellular proteins. Involvement in ribozyme stability and activity. J. Mol. Biol., 242: 619, 1994.
Speidel, K., Osen, W., Faath, S., Hilgert, I., Obst, R., Braspenning, J., Momburg, F., Hammerling, G. J. and Rammensee, H. G. Priming of cytotoxic T lymphocytes by five heat-aggregated antigens in vivo: conditions, efficiency, and relation to antibody responses. Eur. J. Immunol., 27: 2391, 1997.
Staats, H.F., Oakes, J.E. and lausch, R.N. Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or Asialo GM1+ cells. J. Virol., 65: 6008, 1991.
Stach, R. M. and Rowley, D. A. A first or dominant immunization. II. Induced immunoglobulin carries transforming growth factor beta and suppresses cytolytic T cell responses to unrelated alloantigens. J. Exp. Med., 178: 841, 1993.
Stackpole, C. W. Distinct lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature, 289: 798, 1981.
Stackpole, C. W. Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Res., 43: 3057, 1983.
Stauton, M.J. and Gaffney, E.F. Tumor type is a determinant of susceptibility to apoptosis. Am. J. Clin. Pathol., 103: 300, 1995.
Steitz, J., Bruck, J., Lenz, J., Knop, J. and Tuting, T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res. 61: 8643, 2001.
Strand, S., Hofmann, W.J., Hung, H., Muller, M., Otto, G., Strand, D., Martani, S.M., Stremmel, W., Krammer, P.H. and Galle, P.R. Lymphocyte apoptosis induced by CD95(APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion ? Nature Med., 2: 1361, 1996.
Suda, T., Takahashi, T., Golstein, P. and Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 75: 1169, 1993.
Takaoka, A., Adachi, M., Okuda, H., Sato, S., Yawata, A., Hinoda, Y., Takayama, S., Reed, J. C. and Imai, K. Anti-cell death activity promotes pulmonary metastasis of melanoma cells. Oncogene, 14: 2971, 1997.
Terheyden. P., Siedel, C., Merkel, A., Kampgen, E., Brocker, E.B. and Becker, J.C. Predominant expression of Fas (CD95) ligand in metastatic melanoma revealed by longitudinal analysis. J. Invest. Dermatol., 112: 899, 1999.
Tumpey, T.M., Chen, S-H., oakes, J.E. and Lausch, R.N. Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J. Virol., 70: 898, 1996.
Uhlenbeck, O. C. A small catalytic oligoribonucleotide. Nature, 328: 596, 1987.
Ungefroren, H., Voss, M., Jansen, M., Roeder, C., Henne-Bruns, D., Kremer, B. and Kalthoff, H. Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis. Cancer Res., 58: 1741,1998.
Van P., L. and Abbas, A. K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science, 280: 243, 1998.
Van Kempen, L. C., and Coussens, L. M. MMP9 potentiates pulmonary metastasis formation. Cancer Cell. 2: 251, 2002.
Walker, P.R., Saas, P. and Dietrich, P.Y. Role of Fas ligand (CD95L) in immune escape: the tumor cells strikes back. J. Immunol., 158: 4521, 1997.
Walker, P. R., Saas, P. and Dietrich, P. Y. Tumor expression of Fas ligand (CD95L) and the consequences. Curr. Opin. Immunol., 10: 564, 1998.
Walzog, B., Weinmann, P., Jeblonski, F., Scharffetter-Kochanek, K., Bommert, K. and Gaehtgens, P. A role for beta(2) integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. FASEB J., 13: 1855, 1999.
Weiss, L. Metastatic inefficiency. Adv. Cancer Res., 54: 159, 1990
Wong, C.W., Lee, A., Shientag, L., Yu, J., Dong, Y., Kao, G., Al-Mehdi, A.B., Bernhard, E.J. and Muschel, R.J. Apoptosis: an early event in metastatic inefficiency. Cancer Res., 61: 333, 2001.
Wuyts, A., D'Haese, A., Cremers, V., Menten, P., Lenaerts, J. P., De, L. A., Heremans, H., Proost, P., and Van, D. J. NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. J Immunol., 163: 6155, 1999.
Xie, K., Huang, S., Dong, Z., Gutman, M. and Fidler, I.J. Direct correlation between expression of endogenous inducible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP 31362. Cancer Res., 55: 3123, 1995.
Yang, T. T., Kain, S. R., Kitts, P., Kondepudi, A., Yang, M. M. and Youvan, D. C. Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene, 173: 19, 1996.
Yang, B. C., Wang, Y. S., Wang, C. H., Lin, H. H., Tang, M. J. and Yang, T. L. Transient apoptosis elicited by insulin in serum-starved glioma cells involves Fas/Fas-L and Bcl-2. Cell Biol. Int., 23: 533, 1999.
Zeytun, A., Hassuneh, M., Nagarkatti, M., and Nagarkatti, P.S. Fas-Fas ligand-based interaction between tumor cells and tumor specific-cytotoxic T lymphocytes: a lethal two-way street. Blood, 90: 1952, 1997.
Zhang, Z., Oliver, P., Lancaster, J.R., Schwarzenberger, P.O., Joshi, M.S., Cork, J., and Kolls, J.K. Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. FASEB J., 15: 303, 2001.
Zheng, L. M., Ojcius, D. M., Garaud, F., Roth, C., Maxwell, E., Li, Z., Rong, H., Chen, J., Wang, X. Y., Catino, J. J. and King, I. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp. Med., 184: 579, 1996.