| 研究生: |
曾秉鈞 Tseng, Ping-Chun |
|---|---|
| 論文名稱: |
雷射表面重熔參數對SUS304敏化不銹鋼去敏化之影響 Effect of Laser Surface Melting Parameters on Desensitization of Sensitized 304 Stainless Steel |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 沃斯田鐵型不銹鋼 、敏化 、沿晶腐蝕 、雷射表面重熔 |
| 外文關鍵詞: | intergranular corrosion, sensitization, laser surface melting, Austenitic stainless steel |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗採用2.5kW Nd:YAG雷射,進行沃斯田鐵型不銹鋼敏化之修復技術研究。研究利用雷射進行表面重熔並探討不同操作參數下(雷射功率、掃描速度及離焦距離),對304敏化不銹鋼沿晶腐蝕(IGC)抵抗性的影響。實驗採用惠氏試驗法(Huey test),評估經重熔後試件之沿晶腐蝕抵抗性,並配合熱循環溫度(Thermal cycle)及殘留應力量測,進而了解雷射表面重熔對於試件整體之影響。
實驗結果顯示,經重熔後之區域可使得原先敏化之微結構達到去敏化作用,進而改善其IGC抵抗性。理由是雷射表面重熔具有相當高的峰值溫度和快速冷卻速率,導致晶界中的碳化鉻析出物被重新溶解和抑制,達到改質之作用,且重熔區之寬度隨著雷射功率或離焦長度的提高而顯著增加。而重熔入熱所產生之熱影響區,因其於峰值溫度950oC以上區間產生碳化物固溶作用,故於重熔區兩側因參數變化將產生尺寸不等之重熔保護區,討論此區域對沿晶腐蝕抵抗性,亦能得到優於敏化區間之結果。
而重熔參數改變除可影響實際去敏化之效果及範圍外,亦可能因入熱量或溫度梯度的改變,進而產生新的敏化區域或引入較高的重熔殘留應力,故對敏化之304不銹鋼而言,選用適當的雷射表面重熔參數,才能為敏化不鏽鋼進行較快速及最有效的去敏化修復。
A practical repairing technique of laser surface melting (LSM) was performed on sensitized 304 stainless steel surface using a 2.5kW Nd:YAG laser. The main concerns in this study were the effects of LSM parameters, such as, laser power(1000~1500W), traveling speed(200~1200 mm/min) and defocus length(0~-20 mm) on the intergranular corrosion (IGC) resistance of sensitized 304 stainless steel. The IGC susceptibility of specimens was evaluated by the Huey test.
The experimental results showed that with the use of the LSM, the sensitized microstructures were effectively desensitized or repaired. The improved IGC resistance in the laser melted zone (LMZ) and heat affected zone (HAZ) compared to the rest un-melted area was apparent. This was due to the very high peak temperature and rapid cooling rate during LSM process which caused the Cr-carbide precipitates to be dissolved and suppressed at the refined sub-grain boundaries in the LMZ and HAZ. The width of laser melted zone was increased significantly with the increase of laser power or defocus length. LSM is proven to be a powerful effective method for repairing the sensitized 304 stainless steel.
第七章 參考文獻
1. 財團法人國家政策研究基金會, 核能發電之必要性(譯自The Need of Nuclear Power), 國政研究報告, 2000.
2. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol.22, pp.49-69, 1997.
3. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol.26, pp.8-12, 1999.
4. 賴文貴,“核電廠高溫水質環境的電化學意義”, 核研季刊, Vol.14, pp.32-40, 1995.
5. T. Ishihiara, "Corrosion Failure and Its Prevention in Light Water Reactor", Welding International, pp.209-216, 1989(3).
6. M.G.Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986.
7. 李驊登, “鋼鐵材料學”, 2007.
8. G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara & H. Watanabe, “Modeling of Precipitation and Cr Depletion of Inconel 600 During Heat Treatments and LSM Procedure”, Journal of Alloy and Compounds, Vol.419, pp.118-125, 2006.
9. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara & H. Watanabe, "Repair of Stress Corrosion Cracking in Overlaying of Inconel 182 by Laser Surface Melting", Welding in the World, Vol.49, pp.37-44, 2005.
10. G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara & H. Watanabe, "Stress Corrosion Cracking Sealing in Overlaying of Inconel 182 by Laser Surface Melting”, Journal of Materials Processing Technology, Vol.173, pp.330-336, 2006.
11. Y. S. Lim, J. H. Suh, I. H. Kuk & J. S. Kim, "Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting", Metallurgical and Materials Transactions A, Vol.28A, pp.1223-1231, 1997.
12. J. S. Kim, J. H. Suh, J. K. Shin, S. J. L. Kang, Y. S. Lim, and I.H. Kuk, "Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600", Materials Science and Engineering A, Vol.254, pp. 67-75, 1998.
13. Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, "Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600", Corrosion Science, Vol. 43, pp. 1321-1335, 2001.
14. J. D. Kim, C. J. Kim, C. M. Chung, "Repair welding of etched tubular component of nuclear power plant by Nd:YAG laser", Journal of Materials Processing Technology, Vol. 114, pp. 51-56, 2001.
15. O. V. Akgun & O. T. Inal, “Desensitization of Sensitized 304 Stainless Steel by Laser Surface Melting”, Journal of Materials Science, Vol.27, pp.2147-2153, 1992.
16. S. Kumar & M. K. Banerjee, “Desensitization of Type 316 Stainless Steel by Laser Surface Melting”, Anti-Corrosion Methods and Materials, Vol.47, No.1, pp.20-25, 2000.
17. Z. Liu, P. H. Chong, P. Skeldon, P. A. Hilton, J. T. Spencer & B. Quayle, “Fundamental Understanding of The Corrosion Performance of Laser-Melted Metallic Alloys”, Surface & Coatings Technology, Vol.200, pp.5514-5525, 2006.
18. R. A. Lula , “Stainless Steel”, Metals Park, Ohio :American Society for Metals ,1986.
19. “鋼鐵材料設計與應用”, 中國礦冶工程協會, 台灣, 2007.
20. K. Osozawa, K. Bohnenka & H. J. Engell, “Potentiostatic Study on Intergranular Corrosion of an Austenitic Chromium-Nickel Stainless Steel”, Corrosion Science, Vol.6, pp.421-&, 1966.
21. K. T. Aust, “Intergranlur Corrosion of Austenitic Stainless Steels”, Transactions of The Metallurgical Society of AIME, Vol.245, pp.2117-&, 1969.
22. S. Liu & J. E. Indacochea, “Metal Handbook”, Vol.1, Property and Selection : Irons, Steels and High-Performance Alloy, pp.603-613, 1989.
23. R. E. Hanneman & K. T. Aust, “Solute Clustering and Intergranular Corrosion”, Scripta Metallurgica, Vol.2, pp.235-238, 1968.
24. J. S. Armijo, “Impurity Adsorption and Intergranular Corrosion of Austenitic Stainless Steel in Boiling HNO3-K2Cr2O7 Solutions”, Corrosion Science, Vol.7, pp.143-150, 1967.
25. J. S. Armijo, “Intergranular Corrosion of Nonsensitized Austenitic Stainless Steels”, Corrosion Science., Vol.24, pp.24-30, 1984.
26. A. B. Kinzell, Trans. Met. Soc. AIME, Vol.194, pp.469-473, 1952.
27. R. Stickler, A. Vinckier, “Electron Microscope Investigation of the Intergranular Corrosion Fracture Surfaces in a Sensitized Austenitic Stainless Steel”, Corrosion Science, Vol.3, pp.1-8, 1963.
28. A. B. Kinzell, J. Metals, Vol.4, pp.469-473, 1952.
29. 王振欽, “銲接學”, 台灣, 2006.
30. V. Kain, K. Chandra, K. N. Adhe & P. K. De, “Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels”, Journal of Nuclear Materials, Vol.334, pp.115-132, 2004.
31. ASTM A262-02a, “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels”, 2002.
32. W. M. Steen, “Laser Material Processing”, Springer-Verlag, London, 1991.
33. J. C. Ion, “Laser Processing of Engineering Materials”, Elsevier, Amsterdam, 2004.
34. 李孟軒, “GTAW與LBW製程對鎳基690合金對街和之殘留應力研究”, 國立成功大學機械工程研究所碩士論文, 2007.
35. 曾光宏, “不鏽鋼銲件變形與殘留應力之研究”, 國立交通大學機械工程研究所博士論文, 2001.
36. S. Yang, Z. J. Wang, H. Kokawa & Y. S. Sato, “Reassessment of the effects of laser surface melting on IGC of SUS 304”, Materials Science and Engineering, Vol.474, pp.112-119, 2008.
37. S. Yang, Z. J. Wang & H. Kokawa, “Grain boundary engineering of 304 austenitic stainless steel by laser surface melting amd annealing”, Journal of Materials Science, Vol.42, pp.847-853, 2007.
38. K. Matsubuchi, “Analysis of Welded Structures”, Pergamon Press, Oxford, 1980.
39. 蔡曜隆, “銲道溫度與應力分析實驗”, 國立交通大學機械工程研究所碩士論文, 2001.
40. T. L. Teng, P. H. Chang & W. C. Tseng, “Effect of welding sequences on residual stresses”, Computers & Structures, Vol.81, pp.273-286, 2003.
41. ASTM E837-01, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method”, 2002.
42. A. M. ElBatahgy, “Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels”, Materials Letters, Vol.32, pp.155-163, 1997.
43. E. M. Anawa & A. G. Olabi. “Using Taguchi method to optimize welding pool of dissimilar laser-welded components”, Optics & Laser Technology, Vol.40, pp.379-388, 2008.
44. 牛文俊, “銲接熱對鎳基600合金銲件耐蝕性之影響”, 國立成功大學機械工程研究所, 碩士論文, 2008
45. H. T. Lee, J. L. Wu, T. Y. Kuo, R. C. Kuo, J. Y. Huang & S. L. Jeng , “The Influence of Thermal Cycles in the Heat Affected Zone Sensitization of Alloy 690”, Asian-Pacific Corrosion Forum – Corrosion in Nuclear Systems 2009, Tokyo, 2009.
46. H. T. Lee & J. L. Wu, Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments”, Corrosion Science, Vol.51, pp.733–743, 2009.
47. H. T. Lee & J. L. Wu, “The effects of peak temperature and cooling rate on the susceptibility to intergranular corrosion of alloy 690 by laser beam and gas tungsten arc welding”, Corrosion Science, Vol.51, pp.439–445, 2009.