| 研究生: |
謝志遠 Shieh, Jhih-yuan |
|---|---|
| 論文名稱: |
帶有B型及C型肝炎病毒基因體之低密度顆粒之分析 Analysis of low-density viral-genome containing particles of hepatitis B and C viruses |
| 指導教授: |
楊孔嘉
Young, Kung-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 外文關鍵詞: | HBV, HCV, lipoprotein, lipo-viral particle |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝炎病毒感染是目前主要引起急性和慢性肝炎的主因,同時也是世界公共衛生上一個重要的議題。其中,由B型和C型肝炎病毒所引起的慢性肝炎往往會導致更嚴重的肝臟病變,例如:肝硬化和肝細胞癌等。過去的研究指出,在C型肝炎病毒感染的病人的血清中發現,帶有C型肝炎病毒RNA的顆粒出現在不同的血清密度範圍 (從1.03到1.25 克/毫升),而其中感染力最高的部分是位於低密度的部分 (小於1.06克/毫升)。帶有C型肝炎病毒RNA的低密度顆粒被證實會與宿主血液中的β脂蛋白 (低密度脂蛋白和極低密度脂蛋白)有結合的現象,並富含三酸甘油酯、脂蛋白元B (apolipoprotein B)、C型肝炎病毒RNA、C型肝炎病毒核蛋白 (core protein),因此有研究人員將其命名為病毒脂質顆粒 (lipo-viral particle)。 然而,目前對於C型肝炎病毒脂質顆粒的了解仍不是十分清楚。在本研究中,我們使用鹽類梯度離心的方式來分離血清的低密度部分,發現了在C型肝炎病毒感染的病人的血清低密度部分有著較高的C型肝炎病毒RNA含量 (佔總血清的48.3 ± 27.7 %)、β脂蛋白和免疫球蛋白G,但這種現象並未在B型肝炎病毒感染的病人的血清低密度部分發現。在使用表面活性劑處理之後,我們發現C型肝炎病毒RNA會被RNA分解脢 (RNase)給分解 (下降約4.4 log10/ml, p=0.003),指出了C型肝炎病毒脂質顆粒中的脂質部分可能具有保護C型肝炎病毒RNA的功能。此外,在穿透式電子顯微鏡的觀察下我們發現,在C型肝炎病毒感染的病人的血清低密度部分,其低密度顆粒的大小分佈情形有右移的趨勢,而在B型肝炎病毒感染的病人和無B型及C型病毒感染的健康捐血者的血清低密度部分則沒有發現到這種現象。同時,我們使用了表面結合有與C型肝炎病毒RNA專一性互補的寡核酸的奈米金顆粒來偵測C型肝炎病毒RNA所存在的位置,發現了有許多奈米金顆粒的訊號出現在我們懷疑是C型肝炎病毒脂質顆粒之中。總合以上結果,我們推論大部分的C型肝炎病毒RNA是被包裹在β脂蛋白中,而病毒脂質顆粒中的脂質部分可能具有保護C型肝炎病毒RNA的功能。
Hepatitis B and C viruses (HBV) and (HCV), two major etiological agents of liver diseases, chronically infect millions of individuals in global population. Spherical HBV virion of 42 nm in diameter, known as Dane particle, has been well recognized, whereas rarely identified such HCV virion in plasma from infected patients. Circulating HCV particles exhibit a heterogeneous density. The low-density HCV fractions which may be due to association with β-lipoproteins have the highest infectivity among the other fractions with high densities. The purified low-density HCV RNA-containing particles were rich in triglycerides, containing at least apolipoprotein B, HCV-RNA, and HCV-core protein, which were named as lipo-viral particles (LVPs). However, the functional characteristics of LVPs remained unclear. In this study, salt gradient combined with ultracentrifugation was exploited to isolate the low-density fraction of plasma samples from blood bank donors who came under occult HBV or HCV infections. The results showed that the low-density fraction of HCV+ plasma contained a substantial amount of viral genome (48.3 ± 27.7% of total plasma HCV-RNA), but the corresponding fraction of HBV+ plasma had only a tiny amount (1.4 ± 0.8% of total plasma HBV-DNA). In a nuclease sensitivity assay, pretreatment of isolated HCV LVP with detergent triton X-100 could yield RNase-mediated degradation of HCV-RNA (decreased by 4.4 log10/ml, p=0.003). However, the HCV-RNA remained resistant to RNase digestion upon pretreatment with proteinase K. The results suggested that the lipid but not protein components of LVPs might be responsible to protect HCV-RNA. Furthermore, the size distribution of low-density particles was skew to the right in samples with HCV as compared to those with HBV or with neither HCV nor HBV. Additionally, nanogold conjugated HCV-specific oligonucleotide probes were used to detect HCV-RNA in the middle of LVP, suggesting that HCV genome might be incorporated into host lipoproteins. In conclusion, surrounding HCV-RNA by low-density lipoprotein particles might protect HCV genome in circulation. The results shed some light on HCV biology and hold potentials in the development of new anti-HCV strategy.
1. Lam, E. and V. Bain. Hepatitis as a World Health Problem. ENCYCLOPEDIA OF LIFE SCIENCES, 2003. John Wiley & Sons, Ltd. www.els.net [doi: 10.1038/npg.els.0002236].
2. Koike, K., et al., Molecular mechanism of viral hepatocarcinogenesis. Oncology, 2002. 62 Suppl 1: p. 29-37.
3. W.H.O., Hepatitis B fact sheet. http://www.who.int/mediacentre /factsheets/fs204/en. 2005, World Health Organization: Geneva, Switzerland.
4. Merican, I., et al., Chronic hepatitis B virus infection in Asian countries. J Gastroenterol Hepatol, 2000. 15(12): p. 1356-61.
5. W.H.O., Introduction of hepatitis B vaccine into childhood immunization services. 2001, World Health Organization: Geneva, Switzerland.
6. Shepard, C.W., et al., Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev, 2006. 28: p. 112-25.
7. DS, C., Hepatitis B virus infection, its sequelae, and prevention in Taiwan. Neoplasms of the Liver, ed. O. K and I. KG. 1987, Tokyo: Springer-Verlag. 71-80.
8. Chen, C.H., et al., Estimation of seroprevalence of hepatitis B virus and hepatitis C virus in Taiwan from a large-scale survey of free hepatitis screening participants. J Formos Med Assoc, 2007. 106(2): p. 148-55.
9. Ni, Y.H., et al., Hepatitis B virus infection in children and adolescents in a hyperendemic area: 15 years after mass hepatitis B vaccination. Ann Intern Med, 2001. 135(9): p. 796-800.
10. Zuckerman, A.J., Hepatitis Viruses. ENCYCLOPEDIA OF LIFE SCIENCES, 2006. John Wiley & Sons, Ltd. www.els.net [doi: 10.1038/npg.els.0004329}.
11. EE, M., M. F, and K. M, Hepatitis B vaccine. 4th ed. Vaccines, ed. P. SA, O. WA, and O. PA. 2004: Philadelphia, PA: W B Saunders Company. 299-337.
12. Alter, M.J., Epidemiology of viral hepatitis and HIV co-infection. J Hepatol, 2006. 44(1 Suppl): p. S6-9.
13. The Global Burden of Hepatitis C Working Group. Global burden of disease (GBD) for hepatitis C. J Clin Pharmacol, 2004. 44(1): p. 20-9.
14. Lee, S.D., et al., Seroepidemiology of hepatitis C virus infection in Taiwan. Hepatology, 1991. 13(5): p. 830-3.
15. Sheu, J.C., et al., Prevalence of hepatitis C viral infection in a community in Taiwan. Detection by synthetic peptide-based assay and polymerase chain reaction. J Hepatol, 1993. 17(2): p. 192-8.
16. Alter, M.J., Prevention of spread of hepatitis C. Hepatology, 2002. 36(5 Suppl 1): p. S93-8.
17. W.H.O., Hepattiittiis C. 2002, World Health Organization: Geneva, Switzerland.
18. Hauri, A.M., G.L. Armstrong, and Y.J. Hutin, The global burden of disease attributable to contaminated injections given in health care settings. Int J STD AIDS, 2004. 15(1): p. 7-16.
19. Ganem, D. and H.E. Varmus, The molecular biology of the hepatitis B viruses. Annu Rev Biochem, 1987. 56: p. 651-93.
20. Stuyver, L., et al., A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. J Gen Virol, 2000. 81(Pt 1): p. 67-74.
21. Yokosuka, O. and M. Arai, Molecular biology of hepatitis B virus: effect of nucleotide substitutions on the clinical features of chronic hepatitis B. Med Mol Morphol, 2006. 39(3): p. 113-20.
22. Chisari, F.V. and C. Ferrari, Hepatitis B virus immunopathogenesis. Annu Rev Immunol, 1995. 13: p. 29-60.
23. Murakami, S., Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol, 2001. 36(10): p. 651-60.
24. Shlomai, A. and Y. Shaul, Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology, 2003. 37(4): p. 764-70.
25. Feinstone, S.M., et al., Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med, 1975. 292(15): p. 767-70.
26. Choo, Q.L., et al., Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989. 244(4902): p. 359-62.
27. Pringle, C.R., Virus taxonomy--1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol, 1999. 144(2): p. 421-9.
28. Reed, K.E. and C.M. Rice, Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol, 2000. 242: p. 55-84.
29. Bartenschlager, R. and V. Lohmann, Replication of hepatitis C virus. J Gen Virol, 2000. 81(Pt 7): p. 1631-48.
30. Bukh, J., R.H. Purcell, and R.H. Miller, Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci U S A, 1992. 89(11): p. 4942-6.
31. Kolykhalov, A.A., S.M. Feinstone, and C.M. Rice, Identification of a highly conserved sequence element at the 3' terminus of hepatitis C virus genome RNA. J Virol, 1996. 70(6): p. 3363-71.
32. Bukh, J., R.H. Miller, and R.H. Purcell, Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis, 1995. 15(1): p. 41-63.
33. Moradpour, D., F. Penin, and C.M. Rice, Replication of hepatitis C virus. Nat Rev Microbiol, 2007. 5(6): p. 453-63.
34. Tsukiyama-Kohara, K., et al., Internal ribosome entry site within hepatitis C virus RNA. J Virol, 1992. 66(3): p. 1476-83.
35. Hellen, C.U. and T.V. Pestova, Translation of hepatitis C virus RNA. J Viral Hepat, 1999. 6(2): p. 79-87.
36. Luo, G., S. Xin, and Z. Cai, Role of the 5'-proximal stem-loop structure of the 5' untranslated region in replication and translation of hepatitis C virus RNA. J Virol, 2003. 77(5): p. 3312-8.
37. Rijnbrand, R.C. and S.M. Lemon, Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol, 2000. 242: p. 85-116.
38. Friebe, P., et al., Sequences in the 5' nontranslated region of hepatitis C virus required for RNA replication. J Virol, 2001. 75(24): p. 12047-57.
39. Luo, G., Cellular proteins bind to the poly(U) tract of the 3' untranslated region of hepatitis C virus RNA genome. Virology, 1999. 256(1): p. 105-18.
40. Yi, M. and S.M. Lemon, 3' nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol, 2003. 77(6): p. 3557-68.
41. Kolykhalov, A.A., et al., Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol, 2000. 74(4): p. 2046-51.
42. Yanagi, M., et al., In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2291-5.
43. You, S., et al., A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol, 2004. 78(3): p. 1352-66.
44. Friebe, P., et al., Kissing-loop interaction in the 3' end of the hepatitis C virus genome essential for RNA replication. J Virol, 2005. 79(1): p. 380-92.
45. Simmonds, P., et al., A proposed system for the nomenclature of hepatitis C viral genotypes. Hepatology, 1994. 19(5): p. 1321-4.
46. Xu, Z., et al., Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. Embo J, 2001. 20(14): p. 3840-8.
47. Lai, M.M. and C.F. Ware, Hepatitis C virus core protein: possible roles in viral pathogenesis. Curr Top Microbiol Immunol, 2000. 242: p. 117-34.
48. Asselah, T., et al., Steatosis in chronic hepatitis C: why does it really matter? Gut, 2006. 55(1): p. 123-30.
49. Dubuisson, J., Folding, assembly and subcellular localization of hepatitis C virus glycoproteins. Curr Top Microbiol Immunol, 2000. 242: p. 135-48.
50. Pileri, P., et al., Binding of hepatitis C virus to CD81. Science, 1998. 282(5390): p. 938-41.
51. Scarselli, E., et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J, 2002. 21(19): p. 5017-25.
52. Agnello, V., et al., Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12766-71.
53. Pohlmann, S., et al., Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol, 2003. 77(7): p. 4070-80.
54. Barth, H., et al., Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem, 2003. 278(42): p. 41003-12.
55. Evans, M.J., et al., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007. 446(7137): p. 801-5.
56. Carrere-Kremer, S., et al., Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol, 2002. 76(8): p. 3720-30.
57. Sakai, A., et al., The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11646-51.
58. Pavlovic, D., et al., The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A, 2003. 100(10): p. 6104-8.
59. Reed, K.E., A. Grakoui, and C.M. Rice, Hepatitis C virus-encoded NS2-3 protease: cleavage-site mutagenesis and requirements for bimolecular cleavage. J Virol, 1995. 69(7): p. 4127-36.
60. Waxman, L., et al., Host cell factor requirement for hepatitis C virus enzyme maturation. Proc Natl Acad Sci U S A, 2001. 98(24): p. 13931-5.
61. De Francesco, R. and C. Steinkuhler, Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr Top Microbiol Immunol, 2000. 242: p. 149-69.
62. Li, K., et al., Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A, 2005. 102(8): p. 2992-7.
63. Meylan, E., et al., Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005. 437(7062): p. 1167-72.
64. Seth, R.B., et al., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005. 122(5): p. 669-82.
65. Kawai, T., et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005. 6(10): p. 981-8.
66. Xu, L.G., et al., VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 2005. 19(6): p. 727-40.
67. El-Hage, N. and G. Luo, Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J Gen Virol, 2003. 84(Pt 10): p. 2761-9.
68. Einav, S., et al., A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication. J Virol, 2004. 78(20): p. 11288-95.
69. Elazar, M., et al., Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J Virol, 2003. 77(10): p. 6055-61.
70. Gale, M.J., Jr., M.J. Korth, and M.G. Katze, Repression of the PKR protein kinase by the hepatitis C virus NS5A protein: a potential mechanism of interferon resistance. Clin Diagn Virol, 1998. 10(2-3): p. 157-62.
71. Shi, S.T., et al., Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology, 2002. 292(2): p. 198-210.
72. Schmidt-Mende, J., et al., Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem, 2001. 276(47): p. 44052-63.
73. Piccininni, S., et al., Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J Biol Chem, 2002. 277(47): p. 45670-9.
74. Burtis, C.A. and E.R. Ashwood, Tietz Fundamentals of Clinical Chemistry. 5 ed. 2001. 462-493.
75. Miyamoto, H., et al., Extraordinarily low density of hepatitis C virus estimated by sucrose density gradient centrifugation and the polymerase chain reaction. J Gen Virol, 1992. 73 ( Pt 3): p. 715-8.
76. Kanto, T., et al., Buoyant density of hepatitis C virus recovered from infected hosts: two different features in sucrose equilibrium density-gradient centrifugation related to degree of liver inflammation. Hepatology, 1994. 19(2): p. 296-302.
77. Thomssen, R., et al., Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol, 1992. 181(5): p. 293-300.
78. Prince, A.M., et al., Visualization of hepatitis C virions and putative defective interfering particles isolated from low-density lipoproteins. J Viral Hepat, 1996. 3(1): p. 11-7.
79. Choo, S.H., et al., Association of hepatitis C virus particles with immunoglobulin: a mechanism for persistent infection. J Gen Virol, 1995. 76 ( Pt 9): p. 2337-41.
80. Agnello, V., R.T. Chung, and L.M. Kaplan, A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med, 1992. 327(21): p. 1490-5.
81. Hijikata, M., et al., Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. J Virol, 1993. 67(4): p. 1953-8.
82. Bradley, D., et al., Hepatitis C virus: buoyant density of the factor VIII-derived isolate in sucrose. J Med Virol, 1991. 34(3): p. 206-8.
83. Thomssen, R., S. Bonk, and A. Thiele, Density heterogeneities of hepatitis C virus in human sera due to the binding of beta-lipoproteins and immunoglobulins. Med Microbiol Immunol, 1993. 182(6): p. 329-34.
84. Monazahian, M., et al., Binding of human lipoproteins (low, very low, high density lipoproteins) to recombinant envelope proteins of hepatitis C virus. Med Microbiol Immunol, 2000. 188(4): p. 177-84.
85. Andre, P., et al., Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol, 2002. 76(14): p. 6919-28.
86. Deforges, S., et al., Expression of hepatitis C virus proteins in epithelial intestinal cells in vivo. J Gen Virol, 2004. 85(Pt 9): p. 2515-23.
87. Sun, H.-Y., Characterization of viral-lipid particles isolated from patients with hepatitis C virus infection. 2004, National Cheng Kung University Tainan, Taiwan.
88. Thomssen, R. and S. Bonk, Virolytic action of lipoprotein lipase on hepatitis C virus in human sera. Med Microbiol Immunol, 2002. 191(1): p. 17-24.
89. Fujita, N., et al., Paraformaldehyde protects of hepatitis C virus particles during ultracentrifugation. J Med Virol, 2001. 63(2): p. 108-16.
90. Cohen, J.C., T.D. Noakes, and A.J. Benade, Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am J Clin Nutr, 1989. 49(3): p. 443-7