簡易檢索 / 詳目顯示

研究生: 彭奕愷
Peng, I-Kai
論文名稱: 基於交叉注意力機制模型與遮蓋自編碼訓練策略於人類主要運動皮質中解碼觸覺資訊
Decoding Tactile Information from the Human Primary Motor Cortex Using a Cross-Attention Mechanism Model and Masked Autoencoder Training Strategy
指導教授: 楊世宏
Yang, Shih-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 66
中文關鍵詞: 侵入式腦機介面觸覺解碼主要運動皮質交叉注意力
外文關鍵詞: Tactile Decoding, Intracortical Brain-Computer Interface, Primary Motor Cortex, Cross Attention
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Extend Abstract ii 目錄 viii 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1 研究背景:腦機介面在運動功能障礙中的應用 1 1.2 研究問題:基於M1腦區的BCI限制 1 1.3 研究動機: M1中的感覺訊號於工程上的應用潛力 3 1.4 研究目的:利用M1的神經訊號解碼感覺資訊 3 1.5 貢獻 3 第二章 文獻探討 5 2.1 M1腦區中存在本體觸覺資訊的探索 5 2.2 應用於M1腦區的外周觸覺反饋效應 5 第三章 研究方法 7 3.1 研究許可、受試者資訊與神經訊號 7 3.2 觸覺刺激實驗架構 7 3.3 實驗設計 9 3.4 神經元響應分析 11 3.4.1 以one way anova挑選對刺激有響應的unit 11 3.4.2 以base line compare挑選對刺激有響應的unit 11 3.5 以Turning Curve特徵挑選對刺激方向有響應的unit 12 3.6 解碼器概述 14 3.7 Encoder架構 15 3.7.1 Layer Normalization 16 3.7.2 Transformer 17 3.7.3 Self-attention 18 3.7.4 Cross-attention 18 3.7.5 Positional encoding 19 3.8 Decoding head 20 3.8.1 Global Average Pooling 20 3.8.2 Fully Connected (FC) Layer 20 3.9 Mask Auto Encoder (MAE) 21 3.9.1 Possion NLL Loss 22 3.9.2 Generator 22 3.10 量化和統計分析 23 3.10.1 準確率(accuracy) 23 3.10.2 Stratified k-fold cross-validation 24 3.10.3 統計檢定 24 第四章 研究結果 25 4.1 對刺激有響應的神經元統計分析 25 4.2 對刺激方向有響應的神經元統計分析 27 4.3 五刺激方向解碼表現 30 4.3.1 不同γt值挑選神經元對解碼表現的影響 31 4.3.2 排除對刺激方向有響應的神經元對解碼表現的影響 31 4.4 MAE(mask auto encoder)訓練解果與分析 32 4.4.1 神經訊號重建 32 4.4.2 使用MAE訓練策略對解碼表現的影響 33 4.5 Model Ablations 35 4.5.1 Encoder中不同Transformer block層數對解碼表現的影響 35 4.5.2 Ecnoder中不同attention對象對表現的影響 35 4.5.3 Generator中使用不同Activation function對解碼表現的影響。 37 4.5.4 不同Reconstruction Loss對解碼表現的影響。 38 4.5.5 Mask rate對於解碼表現的影響 39 4.5.6 不同Decoding_head對於解碼表現的影響 40 第五章 討論 42 5.1 神經元放電模式 42 5.2 挑選對刺激方向有響應的神經元的有效性評估 42 5.3 Reconstruction Loss與Actvation Function的選擇 42 5.4 注意力機制的關注對象 43 5.5 遮蓋比例(Masking Rate) 44 5.6 Decoding head過度複雜導致解碼準確率下降 44 5.7 研究限制 45 5.7.1 神經元放電特性於長時間下變異性 45 5.7.2 M1腦區中的感覺訊號不穩定性 45 5.7.3 無法實現real-time的觸覺解碼 45 第六章 結論與未來展望 46 參考文獻 48

    [1] V. Gilja et al., “Clinical translation of a high-performance neural prosthesis,” Nature medicine, vol. 21, no. 10, pp. 1142-1145, 2015.
    [2] A. Kawala-Sterniuk et al., “Summary of over fifty years with brain-computer interfaces—a review,” Brain Sciences, vol. 11, no. 1, p. 43, 2021.
    [3] J. L. Collinger et al., “High-performance neuroprosthetic control by an individual with tetraplegia,” The Lancet, vol. 381, no. 9866, pp. 557-564, 2013.
    [4] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164-171, 2006.
    [5] M. A. Lebedev and M. A. Nicolelis, “Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation,” Physiological reviews, vol. 97, no. 2, pp. 767-837, 2017.
    [6] E. C. Leuthardt, K. J. Miller, G. Schalk, R. P. Rao, and J. G. Ojemann, “Electrocorticography-based brain computer interface-the Seattle experience,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 194-198, 2006.
    [7] J. N. Mak and J. R. Wolpaw, “Clinical applications of brain-computer interfaces: current state and future prospects,” IEEE reviews in biomedical engineering, vol. 2, no. pp. 187-199, 2009.
    [8] S. C. Colachis, C. F. Dunlap, N. V. Annetta, S. M. Tamrakar, M. A. Bockbrader, and D. A. Friedenberg, “Long-term intracortical microelectrode array performance in a human: A 5 year retrospective analysis,” Journal of Neural Engineering, vol. 18, no. 4, p. 0460d7, 2021.
    [9] P. D. Ganzer et al., “Restoring the sense of touch using a sensorimotor demultiplexing neural interface,” Cell, vol. 181, no. 4, pp. 763-773. e12, 2020.
    [10] S. J. Bensmaia and L. E. Miller, “Restoring sensorimotor function through intracortical interfaces: progress and looming challenges,” Nature Reviews Neuroscience, vol. 15, no. 5, pp. 313-325, 2014.
    [11] J. E. O’Doherty et al., “Active tactile exploration using a brain–machine–brain interface,” Nature, vol. 479, no. 7372, pp. 228-231, 2011.
    [12] K. E. Schroeder et al., “Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control,” Journal of neural engineering, vol. 14, no. 4, p. 046016, 2017.
    [13] N. G. Hatsopoulos and A. J. Suminski, “Sensing with the motor cortex,” Neuron, vol. 72, no. 3, pp. 477-487, 2011.
    [14] W. Jiang, F. Tremblay, and C. E. Chapman, “Context-dependent tactile texture-sensitivity in monkey M1 and S1 cortex,” Journal of Neurophysiology, vol. 120, no. 5, pp. 2334-2350, 2018.
    [15] G. A. Tabot, S. S. Kim, J. E. Winberry, and S. J. Bensmaia, “Restoring tactile and proprioceptive sensation through a brain interface,” Neurobiology of disease, vol. 83, no. pp. 191-198, 2015.
    [16] B. P. Delhaye, K. H. Long, and S. J. Bensmaia, “Neural basis of touch and proprioception in primate cortex,” Comprehensive Physiology, vol. 8, no. 4, p. 1575, 2018.
    [17] O. J. Lutz and S. J. Bensmaia, “Proprioceptive representations of the hand in somatosensory cortex,” Current Opinion in Physiology, vol. 21, no. pp. 9-16, 2021.
    [18] S. N. Flesher et al., “A brain-computer interface that evokes tactile sensations improves robotic arm control,” Science, vol. 372, no. 6544, pp. 831-836, 2021.
    [19] J. E. O'Doherty, M. Lebedev, T. L. Hanson, N. Fitzsimmons, and M. A. Nicolelis, “A brain-machine interface instructed by direct intracortical microstimulation,” Frontiers in integrative neuroscience, vol. 3, no. p. 20, 2009.
    [20] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object manipulation tasks,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 345-359, 2009.
    [21] Deo, Darrel R., et al. "Effects of peripheral haptic feedback on intracortical brain-computer interface control and associated sensory responses in motor cortex." IEEE transactions on haptics 14.4 (2021): 762-775.
    [22] Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).
    [23] Heeger, David. "Poisson model of spike generation." Handout, University of Standford 5.1-13 (2000): 76.
    [24] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
    [25] Prusty, Sashikanta, Srikanta Patnaik, and Sujit Kumar Dash. "SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer." Frontiers in Nanotechnology 4 (2022): 972421.
    [26] Liu, Xiuling, et al. "Parallel spatial–temporal self-attention CNN-based motor imagery classification for BCI." Frontiers in neuroscience 14 (2020): 587520.
    [27] Hsiao, Ting-Yun, et al. "Filter-based deep-compression with global average pooling for convolutional networks." Journal of Systems Architecture 95 (2019): 9-18.
    [28] Li, Zhi, et al. "Teeth category classification via seven‐layer deep convolutional neural network with max pooling and global average pooling." International Journal of Imaging Systems and Technology 29.4 (2019): 577-583.
    [29] J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Miller, “Long-term stability of cortical population dynamics underlying consistent behavior,” Nature neuroscience, vol. 23, no. 2, pp. 260-270, 2020.
    [30] F. R. Willett et al., “Hand knob area of premotor cortex represents the whole body in a compositional way,” Cell, vol. 181, no. 2, pp. 396-409. e26, 2020.
    [31] N. K. Trzcinski, S. S. Hsiao, C. E. Connor, and M. Gomez-Ramirez, “Multi-finger Receptive Field Properties in Primary Somatosensory Cortex: A Revised Account of the Spatio-Temporal Integration Functions of Area 3b,” bioRxiv, vol. no. p. 2022.03. 21.485210, 2022.
    [32] C. A. Chestek et al., “Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex,” Journal of neural engineering, vol. 8, no. 4, p. 045005, 2011.
    [33] J. C. Barrese et al., “Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates,” Journal of neural engineering, vol. 10, no. 6, p. 066014, 2013.
    [34] Hughes, Christopher, et al. "Bidirectional brain-computer interfaces." Handbook of clinical neurology 168 (2020): 163-181.
    [35] Ding, Xuehao, et al. "Information geometry of the retinal representation manifold." Advances in Neural Information Processing Systems 36 (2024).
    [36] Keeley, Stephen L., et al. "Modeling statistical dependencies in multi-region spike train data." Current opinion in neurobiology 65 (2020): 194-202.
    [37] Zhou, Ding, and Xue-Xin Wei. "Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE." Advances in Neural Information Processing Systems 33 (2020): 7234-7247.
    [38] Maimon, Gaby, and John A. Assad. "Beyond Poisson: increased spike-time regularity across primate parietal cortex." Neuron 62.3 (2009): 426-440.
    [39] Zambrano, Davide, et al. "Sparse computation in adaptive spiking neural networks." Frontiers in neuroscience 12 (2019): 987.

    無法下載圖示 校內:2030-02-10公開
    校外:2030-02-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE