| 研究生: |
彭奕愷 Peng, I-Kai |
|---|---|
| 論文名稱: |
基於交叉注意力機制模型與遮蓋自編碼訓練策略於人類主要運動皮質中解碼觸覺資訊 Decoding Tactile Information from the Human Primary Motor Cortex Using a Cross-Attention Mechanism Model and Masked Autoencoder Training Strategy |
| 指導教授: |
楊世宏
Yang, Shih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 侵入式腦機介面 、觸覺解碼 、主要運動皮質 、交叉注意力 |
| 外文關鍵詞: | Tactile Decoding, Intracortical Brain-Computer Interface, Primary Motor Cortex, Cross Attention |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] V. Gilja et al., “Clinical translation of a high-performance neural prosthesis,” Nature medicine, vol. 21, no. 10, pp. 1142-1145, 2015.
[2] A. Kawala-Sterniuk et al., “Summary of over fifty years with brain-computer interfaces—a review,” Brain Sciences, vol. 11, no. 1, p. 43, 2021.
[3] J. L. Collinger et al., “High-performance neuroprosthetic control by an individual with tetraplegia,” The Lancet, vol. 381, no. 9866, pp. 557-564, 2013.
[4] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164-171, 2006.
[5] M. A. Lebedev and M. A. Nicolelis, “Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation,” Physiological reviews, vol. 97, no. 2, pp. 767-837, 2017.
[6] E. C. Leuthardt, K. J. Miller, G. Schalk, R. P. Rao, and J. G. Ojemann, “Electrocorticography-based brain computer interface-the Seattle experience,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 194-198, 2006.
[7] J. N. Mak and J. R. Wolpaw, “Clinical applications of brain-computer interfaces: current state and future prospects,” IEEE reviews in biomedical engineering, vol. 2, no. pp. 187-199, 2009.
[8] S. C. Colachis, C. F. Dunlap, N. V. Annetta, S. M. Tamrakar, M. A. Bockbrader, and D. A. Friedenberg, “Long-term intracortical microelectrode array performance in a human: A 5 year retrospective analysis,” Journal of Neural Engineering, vol. 18, no. 4, p. 0460d7, 2021.
[9] P. D. Ganzer et al., “Restoring the sense of touch using a sensorimotor demultiplexing neural interface,” Cell, vol. 181, no. 4, pp. 763-773. e12, 2020.
[10] S. J. Bensmaia and L. E. Miller, “Restoring sensorimotor function through intracortical interfaces: progress and looming challenges,” Nature Reviews Neuroscience, vol. 15, no. 5, pp. 313-325, 2014.
[11] J. E. O’Doherty et al., “Active tactile exploration using a brain–machine–brain interface,” Nature, vol. 479, no. 7372, pp. 228-231, 2011.
[12] K. E. Schroeder et al., “Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control,” Journal of neural engineering, vol. 14, no. 4, p. 046016, 2017.
[13] N. G. Hatsopoulos and A. J. Suminski, “Sensing with the motor cortex,” Neuron, vol. 72, no. 3, pp. 477-487, 2011.
[14] W. Jiang, F. Tremblay, and C. E. Chapman, “Context-dependent tactile texture-sensitivity in monkey M1 and S1 cortex,” Journal of Neurophysiology, vol. 120, no. 5, pp. 2334-2350, 2018.
[15] G. A. Tabot, S. S. Kim, J. E. Winberry, and S. J. Bensmaia, “Restoring tactile and proprioceptive sensation through a brain interface,” Neurobiology of disease, vol. 83, no. pp. 191-198, 2015.
[16] B. P. Delhaye, K. H. Long, and S. J. Bensmaia, “Neural basis of touch and proprioception in primate cortex,” Comprehensive Physiology, vol. 8, no. 4, p. 1575, 2018.
[17] O. J. Lutz and S. J. Bensmaia, “Proprioceptive representations of the hand in somatosensory cortex,” Current Opinion in Physiology, vol. 21, no. pp. 9-16, 2021.
[18] S. N. Flesher et al., “A brain-computer interface that evokes tactile sensations improves robotic arm control,” Science, vol. 372, no. 6544, pp. 831-836, 2021.
[19] J. E. O'Doherty, M. Lebedev, T. L. Hanson, N. Fitzsimmons, and M. A. Nicolelis, “A brain-machine interface instructed by direct intracortical microstimulation,” Frontiers in integrative neuroscience, vol. 3, no. p. 20, 2009.
[20] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object manipulation tasks,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 345-359, 2009.
[21] Deo, Darrel R., et al. "Effects of peripheral haptic feedback on intracortical brain-computer interface control and associated sensory responses in motor cortex." IEEE transactions on haptics 14.4 (2021): 762-775.
[22] Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).
[23] Heeger, David. "Poisson model of spike generation." Handout, University of Standford 5.1-13 (2000): 76.
[24] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
[25] Prusty, Sashikanta, Srikanta Patnaik, and Sujit Kumar Dash. "SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer." Frontiers in Nanotechnology 4 (2022): 972421.
[26] Liu, Xiuling, et al. "Parallel spatial–temporal self-attention CNN-based motor imagery classification for BCI." Frontiers in neuroscience 14 (2020): 587520.
[27] Hsiao, Ting-Yun, et al. "Filter-based deep-compression with global average pooling for convolutional networks." Journal of Systems Architecture 95 (2019): 9-18.
[28] Li, Zhi, et al. "Teeth category classification via seven‐layer deep convolutional neural network with max pooling and global average pooling." International Journal of Imaging Systems and Technology 29.4 (2019): 577-583.
[29] J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Miller, “Long-term stability of cortical population dynamics underlying consistent behavior,” Nature neuroscience, vol. 23, no. 2, pp. 260-270, 2020.
[30] F. R. Willett et al., “Hand knob area of premotor cortex represents the whole body in a compositional way,” Cell, vol. 181, no. 2, pp. 396-409. e26, 2020.
[31] N. K. Trzcinski, S. S. Hsiao, C. E. Connor, and M. Gomez-Ramirez, “Multi-finger Receptive Field Properties in Primary Somatosensory Cortex: A Revised Account of the Spatio-Temporal Integration Functions of Area 3b,” bioRxiv, vol. no. p. 2022.03. 21.485210, 2022.
[32] C. A. Chestek et al., “Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex,” Journal of neural engineering, vol. 8, no. 4, p. 045005, 2011.
[33] J. C. Barrese et al., “Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates,” Journal of neural engineering, vol. 10, no. 6, p. 066014, 2013.
[34] Hughes, Christopher, et al. "Bidirectional brain-computer interfaces." Handbook of clinical neurology 168 (2020): 163-181.
[35] Ding, Xuehao, et al. "Information geometry of the retinal representation manifold." Advances in Neural Information Processing Systems 36 (2024).
[36] Keeley, Stephen L., et al. "Modeling statistical dependencies in multi-region spike train data." Current opinion in neurobiology 65 (2020): 194-202.
[37] Zhou, Ding, and Xue-Xin Wei. "Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE." Advances in Neural Information Processing Systems 33 (2020): 7234-7247.
[38] Maimon, Gaby, and John A. Assad. "Beyond Poisson: increased spike-time regularity across primate parietal cortex." Neuron 62.3 (2009): 426-440.
[39] Zambrano, Davide, et al. "Sparse computation in adaptive spiking neural networks." Frontiers in neuroscience 12 (2019): 987.
校內:2030-02-10公開