簡易檢索 / 詳目顯示

研究生: 柯世洋
Ko, Shih-Yang
論文名稱: 基於複雜任務與使用者評論幫助使用者利用手機達到搜尋目標
Using Complex Tasks and User Reviews to Help Users Reach Search Goals on Smartphone
指導教授: 盧文祥
Lu, Wen-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 59
中文關鍵詞: 複雜任務多樣化網路資源使用者評論
外文關鍵詞: Complex task, Multiple Web Resources, User reviews
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,智慧型手機變得愈來愈普及,而且使用者對於智慧型手機的依賴度也愈來愈高。根據研究,手機APP的使用量較前一年成長了76%,APP漸漸成為大家解決生活上大小事中不可或缺的工具。當使用者開始有了使用APP的需求,就會去搜尋引擎搜尋他要的APP。然而傳統搜尋引擎如Google Play對於輸入的查詢往往只視為一個簡單任務來進行處理,使用者所下的搜尋詞時常是由複雜任務所驅動,常常導致搜尋結果不如預期或是需要進行一系列的查詢。
      在本論文中,我們以複雜任務為基礎,檢索任務目標,幫助使用者尋找提供目標服務的APP與位置實體。我們的模型包含三個步驟,分別為產生任務目標,辨識手機能完成的子任務,以及對每一個複雜任務的子任務利用使用者評論找出適合的服務。本結構可以找出包含子任務的手機APP,對於部分手機無法完成的子任務,推薦適合的位置實體,進而增進使用者搜尋複雜任務的效率。

    In recent years, smartphones have become more and more popular. Users thus heavily rely on smartphones to get various information. According to the research in 2014, apps usage grew 76% than previous year. Apps have become an indispensable tool day by day. Conventional search engines such like Google Play usually consider a search query as a simple task. However, the queries are often driven by complex tasks. The results are often less than expected.
    In this work, we utilize the structure of complex task query and subtask goals and help users to find apps and location entities. Our Complex-Task-based Service Recommendation Model (CTSRM) contains three stages. Generating the subtask goals from complex task query, identifying the subtasks that could do on smartphones, and recommending suitable apps and location entities based on user review opinions for every subtask. CTSRM can recommend apps including subtask goals. For those subtasks which cannot do on smartphones, we recommend location entities to assist user accomplish their complex tasks.

    摘要 III Abstract IV Table of Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Problem Description 3 1.3 Method 5 1.4 Contributions 8 1.5 Organization of this dissertation 9 Chapter 2 Related Work 10 2.1 Understanding Users’ Search Goals 10 2.2 Searching and Recommending on Variety of Service 11 2.3 User Review Extraction and Sentiment Analysis 12 Chapter 3 Method 13 3.1 Complex-Task-based Service Recommendation 13 3.2 Subtask Goal Generation Model 16 3.3 User Mobile-Intention Model 18 3.3.1 Web Resources Selection 18 3.3.2 Identifying Mobile-oriented Subtasks 24 3.4 Opinion-based Service Recommendation Model 28 3.4.1 User Review Resource Collection 28 3.4.2 Recommend apps/location entities with opinion 31 Chapter 4 Experiment 34 4.1 Dataset 34 4.2 Evaluation Metrics 35 4.3 Performance of mobile-oriented scores 36 4.4 Performance of app/location entity recommendation 39 Chapter 5 Conclusion 44 References 45

    [1] Broder, A 2002, September. A taxonomy of web search. In ACM Special Interest Group on Information Retrieval Forum (Vol.36, No.2, pp.3-10).
    [2] Rose, D. E., & Levinson D. 2004, May. Understanding user goals in web search. In Proceedings of the 13th international conference on World Wide Web (pp. 13-19).
    [3] Lee, U., Liu, Z., & Cho, J. 2005, May. Automatic Identification of User Goals in Web Search. In Proceedings of the 14th international conference on World Wide Web (pp.391-400).
    [4] Lucchese, C., Orlando, S., Perego, R., Silvestri, F., & Tolomei, G. 2011, February. Identifying task-based sessions in search engine query logs. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 277-286).
    [5] Felid, H., & Allan, J. 2013, July. Task-Aware Query Recommendation. In Proceedings of the 36th international ACM Special Interest Group on Information Retrieval conference on Research and development in information retrieval (pp. 83-92).
    [6] Jones, R., & Klinkner, K. L. 2008, October. Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 699-708).
    [7] Yan, B. & Chen, G. 2011, June. AppJoy: Personalized Mobile Application Discovery, In Proceedings of the 9th international conference on Mobile systems, applications, and services (pp. 113-126).
    [8] Karatzoglou, A., Baltrunas, L., Church, K. & Böhmer, M. 2012, October. Climbing the app wall: enabling mobile app discovery through context-aware recommendations. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 2527-2530).
    [9] Liu, B., Kong, D., Gong, N. Z., Jin, H., & Xiong, H. 2015, February. Personalized Mobile App Recommendation: Reconciling pp Functionality and User Privacy Preference. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (pp. 315-324).
    [10] Papadopoulos, S., Menemenis, F., Kompatsiaris, Y., & Bratu, B. 2009, April. “Advances in Information Retrieval”: Lexical Graphs for Improved Contextual Ad Recommendation. In 31th European Conference on Information Retrieval Research (pp. 216-227).
    [11] Tsatsou, D., Menemenis, F., Kompatsiaris, I., Davis, P. C. 2009, October. A Semantic Framework for Personalized Ad Recommendation based on Advanced Textual Analysis. In Proceedings of the third ACM conference on Recommender systems (pp. 217-220).
    [12] He, X., Gao, M., Kan, M., Liu, Y., & Sugiyama, K. 2014, July. Predicting the Popularity of Web 2.0 Items Based on User Comments. In Proceedings of the 37th international ACM Special Interest Group on Information Retrieval conference on Research & development in information retrieval (pp. 233-242).
    [13] Wijaya, D. T., & Bressan, S. 2008, October. A Random Walk on the Red Carpet: Rating Movies with User Reviews and PageRank. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 951-960).
    [14] Ott, M., Cardie, C., & Hancock, J. 2012, April. Estimating the Prevalence of Deception in Online Review Communities. In Proceedings of the 21st international conference on World Wide Web (pp. 201-210).
    [15] Danescu-Niculescu-Mizil, C., Kossinets, G., Kleinberg, J., & Lee, L. 2009, April. How opinions are received by online communities: a case study on amazon.com helpfulness votes. In Proceedings of the 18th international conference on World wide web (pp. 141-150).
    [16] Fayazi, A., Lee, K., Caverlee, J., & Squiccilarini, A. 2015, August. Uncovering Crowdsourced Manipulation of Online Reviews. In, Proceedings of the 38th International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval (pp. 233-242).
    [17] Jones, R., & Klinkner, K. L. 2008, October. Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 699-708).
    [18] Guo, Q., & Agichtein, E. 2010, July. Ready to buy or just browsing?: detecting web searcher goals from interaction data. In Proceedings of the 33rd international ACM Special Interest Group on Information Retrieval conference on Research and development in information retrieval (pp. 130-137).
    [19] Tsai K. Y., Generating Complex Task Names with Sub-Task Goals to Improve Web Search by Utilizing Multiple Web Resources. Master’s thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2013.
    [20] Blei, D. M., Ng, A. Y., & Jordan, M. I. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022, 2003.
    [21] Lafferty, J., Mccallum, A., and Pereira, F. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceeding of International Conference of Machine Learning (pp. 282-289).
    [22] Wang, T. X., Tsai, K. Y., & Lu, W. H. Identifying Real-Life Complex Task Names with Task-Intrinsic Entities from Microblogs. Ph.D.’s thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2014.
    [23] Cen, L., Kong, D., Jin, H, & Si, L. Mobile App Security Risk Assessment: A Crowdsourcing Ranking Approach from User Comments. In Proceedings of the 2015 Society for Industrial and Applied Mathematics International Conference on Data Mining, 658-666, 2015.
    [24] Kang, I. & Kim, G. 2003, July. Query type classification for web document retrieval. In Proceedings of the 26th annual international ACM Special Interest Group on Information Retrieval conference on Research and development in information retrieval (pp. 64-71).
    [25] Hu, B., Liu, B., Gong, N. Z., Kong, D. & Jin, H. 2015, October. Protecting Your Children from Inappropriate Content in Mobile Apps: An Automatic Maturity Rating Framework. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (pp. 1111-1120).
    [26] Kong, D., & Jin, H. Towards Permission Request Prediction on Mobile Apps via Structure Feature Learning. In Proceedings of the 2015 Society for Industrial and Applied Mathematics International Conference on Data Mining, 604-612, 2015.
    [27] Dekel, O., Manning C. D., Singer Y., Log-Linear Models for Label Ranking. Technical Report, Hebrew University and Stanford University, 2003.
    [28] Ku, K. & Chen, H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval. Journal of American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information Retrieval, 58(12), pages 1838-1850.

    下載圖示
    2021-07-28公開
    QR CODE