簡易檢索 / 詳目顯示

研究生: 盧振亮
Lu, Zhen-Liang
論文名稱: 自感測壓電致動器之振動抑制研究
Vibration suppression of self-sensing piezoelectric actuators
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 65
中文關鍵詞: 壓電自感測阻抗控制無感測速度觀測器抑振
外文關鍵詞: self-sensing piezoelectric actuators, impedance control, open loop speed observer, vibration suppress
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在抑振控制中提出了利用自感測速度觀測器架構,結合壓電自身既可作為感測器也可以作為致動器的特性,使壓電元件可以在作為致動器對機械結構體進行抑振的同時,也可以估測出結構體之振動速度,省去安裝物理感測器作為回授訊號的問題。為了達到自感測壓電致動器的目的,本研究對壓電懸臂樑建立數學模型並且進行模擬來分析壓點懸臂樑之性能,結合其模型來完成壓電自感測架構,並且將估測速度與實驗量測的結果做比較,以驗證壓電自感測致動器可行性。此外,本研究也使用阻抗控制的概念,提供一套系統的阻抗控制設計方法,對壓電系統進行控制參數設計,使其可以改變壓電系統阻抗值,從而達到抑振之目的。

    In order to allow a single piece of piezoelectric material to simultaneously be an actuator and a sensor in the closed loop system, this research proposes a different method of practically implementing the self-sensing piezoelectric actuators. Since the motivation is that the self-sensing piezoelectric actuators will be collocated and applied to active and intelligent structures, such as vibration suppression, an open loop speed observer is used to estimate vibration velocity that reduces the usage of velocity sensor. A theoretical basis for self-sensing piezoelectric actuators is given in terms of using a block diagram approach to build the model of piezoelectric cantilever beams. On the other side, by using the design methodology of mechanical impedance control, adjusting the control parameters systematically, improving the piezoelectric cantilever beam system impedance value, the structural vibration resulted from unknown disturbance causes is suppressed. The usefulness of the proposed control framework will be verified by a series of experiments.

    目錄 摘要 I Abstract II 誌謝 XIII 目錄 XIV 圖目錄 XVII 表目錄 XX 符號表 XXI 第一章 緒論 1 1.1 研究背景 1 1.2 研究背景與文獻回顧 2 壓電自感測致動器 4 阻抗控制 6 1.3 研究目的 8 1.4 本文架構 9 第二章 壓電理論與有限元素分析 11 2.1 壓電理論 11 2.2 壓電方程 12 2.3 有限元素分析 15 2.4 壓電懸臂樑(Piezoelectric Cantilever Beam)分析與設計 16 2.4.1 壓電懸臂樑工作原理 16 2.4.2 壓電懸臂樑有限元素分析 17 2.5 壓電懸臂樑模型驗證 21 第三章 壓電懸臂樑之建模分析與抑振控制器設計 22 3.1 壓電懸臂樑分析 22 3.2 壓電懸臂樑系統識別 25 3.3 自感測速度觀測器 28 3.3.1 自感測速度觀測器架構 28 3.3.2 自感測速度觀測器分析 30 3.4 實驗架構設計 32 3.4.1 電壓迴路設計 34 3.4.2 速度觀測器設計 35 3.4.3 阻抗控制設計 36 第四章 實驗架構與結果 41 4.1 實驗設備 41 4.2 電壓-電流轉換器(V-I Converter) 45 4.3 壓電懸臂樑模型建立實驗 49 4.4 速度觀測器驗證 53 4.5 抑振控制架構實驗 59 第五章 結論與未來工作 62 5.1 結論 62 5.2 未來工作 62 文獻參考 64

    [1] 禹旭光,余南陽,都劍,“空調系統中的低頻噪聲,” 制冷與空調第1期,2006
    [2] J. Tani, T. Takagi and J.Qiu. Intelligent material systems: Application of functional materials.Applied Mechanics Reviews, 1998, 51(8):505-521.
    [3] 許溢適. 壓電陶瓷新技術. 文笙書局. 民國83年.
    [4] C. M. A Vasques, J Dias Rodrigues“ Active vibration control of a smart beam through piezoelectric actuation and laser vibrometer sensing: simulation, design and experimental implementation, Smart Mater. Struct. 16 (2007) 305–316
    [5] Jinjun Shan, Hong-Tao Liu, Dong Sun, “ Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF)”, Mechatronics 15 (2005) 487–503.
    [6] A.P. Parameswaran*, A.B. Pai, P.K. Tripathi, and K.V. Gangadharan“ Active Vibration Control of a Smart Cantilever Beam on General Purpose Operating System”, Defence Science Journal, Vol. 63, No. 4, July 2013, pp. 413-417.
    [7] K Ramesh Kumar, S Narayanan,“Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs”,Smart Materials and Strures. 17 (2008) 055008 (15pp).
    [8] Dosch J J, InmanD J. A self-sening piezoelectric actuator for collocated control [J]. J. of Intell. Mater. Syst. And Struct.1992, 3 (1): 166-185.
    [9] N. Hogan, “Impedance control: an approach to manipulation. Part I: Theory, Part II: Implementation, Part III: Application .” Transactions of ASME, Journal of Dynamic System, Measurement, and Control, vol.107, pp.1-23, 1985.
    [10] 胡家勝,阻抗控制於力覺回饋控制應用之設計與實現,碩士論文,國立成功大學機械工程學系,2003年.
    [11] C. K. Alexander and M. no Sadiku , “Fundamentals of Electric Circuits 3”, McGraw-Hill: pp.387–389, 2006.
    [12] S.P.Patarinski and R. G. Botev,“ Robot force control: a review,” Mechatronics,vol.3, pp.377-398, April 1993.
    [13] 吳耀昇, “無感測之馬達速度觀測器架構探討,”馬達電子報第754期,馬達科技研究中心,2017
    [14] IEEE standard on piezoelectricity, ANSI/IEEE Std. 176-1987.
    [15] H. Allik and J. R. Hughes,“ Finite Element for Piezoelectric Vibration,” International Journal Numerical Methods of Engineering, No.2, pp. 151-157, 1970.
    [16] ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
    [17] F. Xing, B. Dong, and Z. Li, “Impedance Spectroscopic Studies of Cement-Based Piezoelectric Ceramic Composites”, Composites Science and Technology 68 (2008) 2456–2460.
    [18] Jina Kim, Benjamin L. Grisso, Jeong K. Kim, Dong Sam Ha, and Daniel J. Inman, “Electrical Modeling of Piezoelectric Ceramics for Analysis and Evaluation of Sensory Systems,”IEEE, Sensors Applications Symposium,12-14 Feb,2008.
    [19] Moheimani, S.O. Reza, Fleming, Andrew J.,“Piezoelectric transducers for vibration control and damping,”Advances in Industrial Control,2006.
    [20] S. H. Wang and M. C. Tsai, “Dynamic Modeling of Thickness-Mode Piezoelectric Transducer using the Block Diagram Approach”, Ultrasonics 51 (2011) 617–624.
    [21] M. Rakotondrabe, I. A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, and N. Chaillet, “Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly,” 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Jul. 2010.
    [22] Yohsuke Nambu, Shota Yamamoto and Masakatsu Chiba,“A smart dynamic vibration absorber for suppressing the vibration of a string supported by flexible beams”, Smart Materials and Structures 23 (2014) 025032 , 15pp.
    [23] S.P. Qibo Mao, “Control of Noise and Structural Vibration A MATLAB®-Based Approach”, Springer, London,2013.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE