簡易檢索 / 詳目顯示

研究生: 林思翰
Lin, Sih-Han
論文名稱: 二氧化鈦奈米結構於鈣鈦礦太陽能電池之應用
Fabrication of perovskite solar cells using TiO2 nanostructures
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 鈣鈦礦太陽能電池二氧化鈦奈米結構陣列連續式製程電子收集效率
外文關鍵詞: Perovskite solar cell, TiO2 nanostructure arrays, Sequential process, Electron collection efficiency
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用具有直接能隙、高消光係數、高載子傳輸速度優勢的鈣鈦礦材料甲基胺碘鉛,結合具有良好熱及化學穩定性之二氧化鈦奈米結構陣列,來組裝鈣鈦礦太陽能電池。探討其沉積薄膜方式、電洞傳輸層差異、鈣鈦礦層表面相態之控制與影響,對電池效能之影響,分析其中優劣。並比較單晶一維二氧化鈦奈米柱及擬單晶三維二氧化鈦奈米樹枝陣列,作為電子傳輸介質時對電池之影響。其中鈣鈦礦-二氧化鈦奈米樹枝陣列太陽能電池之最佳光伏特性達到Voc~0.92 V,Jsc~22.9 mA/cm2,F.F.~0.62,PCE~13.17 %,相較於鈣鈦礦-一維二氧化鈦奈米柱陣列太陽能電池,電流密度有接近30%的提升,整體效率也有18%的提升。經由外部量子效率、光捕獲效率及載子分離效能之分析,顯示以三維二氧化鈦奈米樹枝陣列組裝之鈣鈦礦太陽能電池具有較佳之載子收集效能。

    In this work, a perovskite material, CH3NH3PbI3, which exhibits high extinction coefficient, high carrier mobility, direct bandgap and broad absorption band has been constructed into the interstices of the TiO2 nanostructure arrays for the fabrication of the perovskite solar cells. Single-crystalline TiO2 nanorod (NR) arrays and quasi-single crystalline TiO2 nanodendrite (ND) arrays are employed as an electron transport layer in the perovskite solar cells. The effects of perovskite formation method, hole transport material, and surface morphology of perovskite on the performance of the solar cells have been studied. The best photovoltaic performance of TiO2 ND perovskite solar cell is characterized by Voc~0.92 V, Jsc~22.9 mA/cm2, F.F.~0.62, and PCE~13.17 % . Compared to TiO2 NR perovskite solar cell, 28% and 18% enhancements in Jsc and PCE have been respectively achieved in the TiO2 ND perovskite solar cell. The results of EQE, UV-VIS, and TRPL measurements concluded that TiO2 ND arrays have better charge collection ability.

    摘要 II 目錄 VII 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2太陽能電池 2 1-3研究動機 8 第二章 文獻回顧 10 2-1太陽能電池 10 2-1-1太陽光頻譜照度 10 2-1-2太陽能電池工作原理[18] 12 2-1-3太陽能電池等效電路 13 2-1-3-1理想太陽能電池等效電路 13 2-1-3-2實際太陽能電池等效電路 16 2-2規則性異質接面結構 20 2-3二氧化鈦性質結構與應用 22 2-4鈣鈦礦太陽能電池 25 2-4-1固態太陽能電池簡介 25 2-4-2鈣鈦礦結構簡介 26 2-4-3鈣鈦礦太陽能電池 31 2-4-3-1鈣鈦礦敏化太陽能電池 32 2-4-3-2介孔性鈣鈦礦太陽能電池 33 2-4-3-3一維二氧化鈦奈米柱陣列鈣鈦礦太陽電池 37 2-4-3-4平面式鈣鈦礦太陽能電池 38 第三章 實驗步驟與研究方法 41 3-1研究材料 41 3-1-1成長一維二氧化鈦奈米柱材料 41 3-1-2成長三維二氧化鈦奈米樹突狀材料 41 3-1-3合成鈣鈦礦材料 42 3-1-4組裝鈣鈦礦/氧化鋅奈米柱陣列太陽能電池之材料 42 3-2實驗流程 44 3-2-1成長二氧化鈦奈米柱陣列 45 3-2-2成長二氧化鈦奈米樹突狀結構於奈米柱陣列 45 3-2-3成長二氧化鈦樹枝狀奈米結構陣列 46 3-2-4四氯化鈦溶液處理 46 3-2-5合成甲基胺碘及甲基胺鉛碘鈣鈦礦材料 46 3-2-6鈣鈦礦/二氧化鈦奈米柱太陽能電池組裝 47 3-3分析與鑑定 49 3-3-1掃描式電子顯微鏡分析(SEM) 49 3-3-2 X光繞射分析(X-Ray Diffraction Analysis) 51 3-3-3紫外光-可見光(UV-Vis.)吸收光譜 52 3-3-4時間解析光激螢光光譜(TRPL) 53 3-3-5太陽能電池效率量測 55 第四章 結果與討論 56 4-1以一步驟合成甲基胺碘鉛製備鈣鈦礦-二氧化鈦奈米柱陣列太陽能電池 56 4-1-1甲基胺鉛碘/DMF溶液之重量百分濃度對鈣鈦礦太陽能電池特之影響 56 4-1-2不同電洞傳輸層對鈣鈦礦太陽能電池之影響 58 4-1-3旋轉塗佈製程參數對鈣鈦礦層表面型態之影響 60 4-2連續式合成甲基胺碘鉛應用於鈣鈦礦二氧化鈦奈米柱陣列太陽能電池 63 4-2-1碘化鉛製程參數對鈣鈦礦太陽能電池之影響 63 4-2-2甲基胺碘鉛電子電洞擴散長度對鈣鈦礦太陽能電池之影響 66 4-3甲基胺碘鉛-二氧化鈦奈米樹枝陣列太陽能電池 69 4-3-1二氧化鈦奈米樹枝陣列之成長 69 4-3-2甲基胺碘鉛-三維二氧化鈦奈米樹枝陣列太陽能電池之製備與特性分析 70 4-3-3鈣鈦礦-三維二氧化鈦奈米樹枝陣列與鈣鈦礦-奈米柱陣列太陽能電池分析與比較 72 4-3-3-1以掃描式電子顯微鏡分析太陽能電池結構 72 4-3-3-2以紫外光可見光光譜分析太陽能電池光捕獲效率 73 4-3-3-3太陽能電池之外步與內部量子轉換效率分析 74 4-3-3-4以時間解析光激螢光光譜分析主動層之載子分離性質 76 4-3-4鈣鈦礦太陽能效率分布圖 77 第五章 總結論 79 第六章 參考文獻 81

    1. M. Gratzel, Photoelectrochemical Cells. Nature, 414, 6861, 338-344.(2001)
    2. D.M. Chapin, C.S. Fullerand G.L. Pearson, A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 25, 5, 676-677.(1954)
    3. E. Serrano, G. Rus and J. García-Martínez, Nanotechnology for Sustainable Energy. Renewable and Sustainable Energy Reviews, 13, 9, 2373-2384.(2009)
    4. NREL,
    5. B. O'Regan and M. Gratzel, A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 6346, 737-740.(1991)
    6. Z. He, C. Zhong, S. Su, M. Xu, H. Wuand Y. Cao, Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure. Nat Photon, 6, 9, 591-595.(2012)
    7. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Liand Y. Yang, Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer. Nat Photon, 6, 3, 180-185.(2012)
    8. T. Xu and Q. Qiao, Conjugated Polymer-Inorganic Semiconductor Hybrid Solar Cells. Energy & Environmental Science, 4, 8, 2700-2720.(2011)
    9. M. Jørgensen, K. Norrmanand F.C. Krebs, Stability/Degradation of Polymer Solar Cells. Solar Energy Materials and Solar Cells, 92, 7, 686-714.(2008)
    10. M. Girtan and M. Rusu, Role of Ito and Pedot:Pss in Stability/Degradation of Polymer:Fullerene Bulk Heterojunctions Solar Cells. Solar Energy Materials and Solar Cells, 94, 3, 446-450.(2010)
    11. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seoand S.I. Seok, Solar Cells. High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 6240, 1234-7.(2015)
    12. Z. Huanping, C. Qi, L. Gang, L. Song, S. Tze-bing, D. Hsin-Sheng, H. Ziruo, Y. Jingbi, L. Yongsheng and Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 6196, 542-6.(2014)
    13. J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, M.D. McGeheeand T. Buonassisi, A 2-Terminal Perovskite/Silicon Multijunction Solar Cell Enabled by a Silicon Tunnel Junction. Applied Physics Letters, 106, 12, 121105.(2015)
    14. C.D. Bailie, M.G. Christoforo, J.P. Mailoa, A.R. Bowring, E.L. Unger, W.H. Nguyen, J. Burschka, N. Pellet, J.Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleoand M.D. McGehee, Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and Cigs. Energy & Environmental Science, 8, 3, 956-963.(2015)
    15. M.A. Green, A. Ho-Baillieand H.J. Snaith, The Emergence of Perovskite Solar Cells. Nat Photon, 8, 7, 506-514.(2014)
    16. S.O. Kasap, Optoelecronics and Photonics: Principle and Practices. Prentice Hall, 2001)
    17. Http://Www.Eyesolarlux.Com/Solar-Simulation-Energy.Htm.
    18. A. Shah, P. Torres, R. Tscharner, N. Wyrschand H. Keppner, Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science, 285, 5428, 692-698.(1999)
    19. C.D. Deibel, V, Reports on Progress in Physics, 73.(2010)
    20. Y.A.M. Ismail, T. Sogaand T. Jimbo, Investigation of Pcbm Concentration on the Performance of Small Organic Solar Cell. ISRN Renewable Energy, 2012)
    21. P. Schilinsky, C. Waldaufand C.J. Brabec, Performance Analysis of Printed Bulk Heterojunction Solar Cells. Advanced Functional Materials, 16, 13, 1669-1672.(2006)
    22. W.-P. Liao, S.-C. Hsu, W.-H. Linand J.-J. Wu, Hierarchical Tio2 Nanostructured Array/P3ht Hybrid Solar Cells with Interfacial Modification. The Journal of Physical Chemistry C, 116, 30, 15938-15945.(2012)
    23. Z.B. Zhang, C.C. Wang, R. Zakaria and J.Y. Ying, Role of Particle Size in Nanocrystalline Tio2-Based Photocatalysts. Journal of Physical Chemistry B, 102, 52, 10871-10878.(1998)
    24. Y.F. Zhu, J.J. Shi, Z.Y. Zhang, C. Zhangand X.R. Zhang, Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide. Analytical Chemistry, 74, 1, 120-124.(2002)
    25. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 5358, 37-+.(1972)
    26. J.M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 6861, 359-367.(2001)
    27. K.-W. Park, S.-B. Hanand J.-M. Lee, Photo(Uv)-Enhanced Performance of Pt–TiO2 Nanostructure Electrode for Methanol Oxidation. Electrochemistry Communications, 9, 7, 1578-1581.(2007)
    28. J.-K. Oh, J.-K. Lee, H.-S. Kim, S.-B. Han and K.-W. Park, TiO2 Branched Nanostructure Electrodes Synthesized by Seeding Method for Dye-Sensitized Solar Cells. Chemistry of Materials, 22, 3, 1114-1118.(2010)
    29. H. Peng and J. Li, Quantum Confinement and Electronic Properties of Rutile Tio2 Nanowires. The Journal of Physical Chemistry C, 112, 51, 20241-20245.(2008)
    30. J.-J. Wu and C.-C. Yu, Aligned Tio2 Nanorods and Nanowalls. The Journal of Physical Chemistry B, 108, 11, 3377-3379.(2004)
    31. B. Liu and E.S. Aydil, Growth of Oriented Single-Crystalline Rutile Tio2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 131, 11, 3985-3990.(2009)
    32. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzerand M. Gratzel, Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies. Nature, 395, 6702, 583-585.(1998)
    33. L.M. Peter, The Grätzel Cell: Where Next? The Journal of Physical Chemistry Letters, 2, 15, 1861-1867.(2011)
    34. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel and N.-G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2, 591.(2012)
    35. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandaland S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13, 4, 1764-1769.(2013)
    36. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzeland T.J. White, Synthesis and Crystal Chemistry of the Hybrid Perovskite (Ch3nh3)Pbi3 for Solid-State Sensitised Solar Cell Applications. Journal of Materials Chemistry A, 1, 18, 5628-5641.(2013)
    37. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozzaand F.D. Angelis, The Raman Spectrum of the Ch3nh3pbi3 Hybrid Perovskite: Interplay of Theory and Experiment. The Journal of Physical Chemistry Letters, 5, 2, 279-284.(2014)
    38. H.J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4, 21, 3623-3630.(2013)
    39. M. Liu, M.B. Johnston and H.J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, advance online publication, 2013)
    40. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddinand M. Gratzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, 7458, 316-319.(2013)
    41. H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel and N.-G. Park, High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile Tio2 Nanorod and Ch3nh3pbi3 Perovskite Sensitizer. Nano Letters, 13, 6, 2412-2417.(2013)
    42. D. Liu and T.L. Kelly, Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat Photon, 8, 2, 133-138.(2014)
    43. M. Liu, M.B. Johnston and H.J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 7467, 395-398.(2013)
    44. 謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二期,第二卷,28-39 (2005).
    45. G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkarand T.C. Sum, Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat Mater, 13, 5, 476-480.(2014)
    46. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza and H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342, 6156, 341-344.(2013)
    47. W.-P. Liao and J.-J. Wu, Wet Chemical Route to Hierarchical Tio2 Nanodendrite/Nanoparticle Composite Anodes for Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 21, 25, 9255-9262.(2011)
    48. Q.L. Jiang , X. Sheng, Y.X. Li, X.J Feng and T. Xu, Rutile TiO2 nanowire-based perovskite solar cells. Chem. Commun,50, 14720-14723.(2014)

    無法下載圖示 校內:2020-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE