簡易檢索 / 詳目顯示

研究生: 許嘉文
Hsu, Chia-Wen
論文名稱: 含彈性異質複材疊層板之拉伸彎矩偶合分析
Coupled Stretching-Bending Analysis for Composite Laminates with Elastic Inclusions
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 類史磋公式複材疊層板拉伸彎矩偶合分析彈性異質邊界元素分析
外文關鍵詞: Stroh-like formalism, composite laminate, coupled stretching-bending analysis, elastic inclusion, boundary element analysis
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由類史磋公式(Stroh-like formalism),能夠找出針對非對稱複材疊層板之拉伸彎矩偶合分析的通解。由於類史磋公式的通解及材料特徵關係之數學形式與應用於二維異向性彈性力學的史磋公式(Stroh formalism)相同,許多在二維問題使用的尋解方法可直接應用於拉伸彎矩偶合分析。倘若相對應二維問題之場域解已被推導,在通解與邊界條件之數學形式相同的條件下,某些拉伸彎矩偶合之特定問題的解析解能夠簡易地導出。運用以上之優勢,在本文中,將推導含彈性異質之疊層板受均佈負載與集中負載的解析解。其中集中負載的答案一般稱為格林函數(Green’s function),由此能計算出邊界元素分析所需的基本解,並帶入針對拉伸彎矩偶合分析的邊界積分式,即可發展出含彈性異質複材疊層板之特殊邊界元素分析。
    將以上異質問題之解析解與格林函數融入本師門研發之結構分析程式AEPH (Anisotropic Elastic Plates_Hwu)進行數值分析,並透過商業軟體ANSYS內的殼元素,比較解析解、特殊邊界元素法與有限元素法之間的結果與差異,藉此驗證本文提出的關於異質問題之分析方法。另外透過調整彈性異質之幾何尺寸與材料性質,上述解析解與特殊邊界元素法亦可應用在含孔洞/裂縫/直線異質/剛性異質疊層板之拉伸彎矩偶合分析。

    Through Stroh-like formalism, whose mathematical form is identical to Stroh formalism for two-dimensional linear anisotropic elasticity, the general solutions for unsymmetric composite laminates with bending extension coupling have been derived. Due to such analogous form, most of the mathematical techniques developed for two-dimensional problems can be transferred to the coupled stretching-bending problems. With such advantage, in this thesis the field solutions for laminates with elastic inclusions subjected to uniform loading at infinity or to concentrated loading will be derived. With the solutions for concentrated loading, generally called “Green’s functions”, the fundamental solutions in the boundary element method can be calculated, and the special boundary element analysis for composite laminates with elastic inclusions will be presented. After comparing the results among the analytical solutions, special boundary element method, and shell element of finite element method, we verified our analyses presented in this thesis with the demonstration of the advantage for our analytical solutions and special boundary element method.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號 XIII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究目的 2 第二章 複材疊層板之分析 3 2.1 基本方程式 3 2.2 類史磋公式 5 2.3 應力函數 8 第三章 均佈負載問題 10 3.1場域解 12 3.2 橢圓介面之合應力與合彎矩 14 3.3 撓度之場域解 15 第四章 格林函數 17 4.1 原先之場域解 17 4.1.1 集中負載於基材區域 17 4.1.2 集中負載於異質區域 18 4.2 原先場域解之簡化與修改 18 4.3 撓度之格林函數 19 4.3.1 集中負載於基材區域 20 4.3.2 集中負載於異質區域 21 4.4 函數向量之微分 22 4.4.1 源點於基材區域 23 4.4.2 源點於異質區域 24 4.5 複數型態對數函數之計算 24 第五章 特殊邊界元素法 27 5.1 邊界積分式 27 5.2 特殊基本解 28 5.2.1 場點與源點皆位於基材區域 29 5.2.2 場點於異質內而源點於基材區域 31 5.2.3 場點於基材區域而源點於異質內 31 5.2.4 場點與源點皆位於異質內 33 5.3 邊界節點與角點方程式 34 5.4 邊界節點之應力應變分析 39 5.5 內部點分析 41 第六章 數值範例 43 範例一:格林函數—集中負載於基材區域 43 範例二:格林函數—集中負載於異質區域 44 範例三:無限域疊層板受均佈彎矩 45 第七章 結論 46 參考文獻 47 附錄A 材料特徵關係 50 附錄B 格林函數內之常數向量 52 B.1 集中負載在基材區域 52 B.2 集中負載在異質區域 52 附錄C 特殊基本解對源點微分結果 54 C.1 場點與源點皆位於基材區域 54 C.2 場點於異質內而源點於基材區域 56 C.3 場點於基材區域而源點於異質內 56 C.4 場點與源點皆位於異質內 57 附表 59 附圖 63

    [1] Becker, W., “A Complex Potential Method for Plate Problems with Bending Extension Coupling,” Archive of Applied Mechanics, Vol. 61, No. 5, pp. 318-326, 1991.
    [2] Lu, P. and Mahrenholtz, O., “Extension of the Stroh Formalism to the Analysis of Bending of Anisotropic Elastic Plates,” Journal of the Mechanics and Physics of Solids, Vol. 42, No. 11, pp. 1725-1741, 1994.
    [3] Chen, P. and Shen, Z., “Extension of Lekhnitskii's Complex Potential Approach to Unsymmetric Composite Laminates,” Mechanics Research Communications, Vol. 28, No. 4, pp. 423-428, 2001.
    [4] Cheng, Z. Q. and Reddy, J. N., “Octet Formalism for Kirchhoff Anisotropic Plates,” Proceedings of the Royal Society of London, Series A., Vol. 458, No. 2022, pp. 1499-1517, 2002.
    [5] Hwu, C., “Stroh-Like Formalism for the Coupled Stretching–Bending Analysis of Composite Laminates,” International Journal of Solids and Structures, Vol. 40, No. 13, pp. 3681-3705, 2003.
    [6] Yin, W. L., “General Solutions of Anisotropic Laminated Plates,” ASME Journal of Applied Mechanics, Vol. 70, No. 4, pp. 496-504, 2003.
    [7] Ting, T. C. T., Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York, 1996.
    [8] Hwu, C., Anisotropic Elastic Plates, Springer, New York, 2010.
    [9] Hwu, C., “Some Explicit Expressions of Stroh-Like Formalism for Coupled Stretching–Bending Analysis,” International Journal of Solids and Structures, Vol. 47, No. 3, pp. 526-536, 2010.
    [10] Becker, W., “Closed-Form Analytical Solutions for a Griffith Crack in a Non-Symmetric Laminate Plate,” Composite Structures, Vol. 21, No. 1, pp. 49-55, 1992.
    [11] Becker, W., “Complex Method for the Elliptical Hole in an Unsymmetric Laminate,” Archive of Applied Mechanics, Vol. 63, No. 3, pp. 159-169, 1993.
    [12] Ukadgaonker, V. G. and Rao, D. K. N., “A General Solution for Stress Resultants and Moments around Holes in Unsymmetric Laminates,” Composite Structures, Vol. 49, No. 1, pp. 27-39, 2000.
    [13] Hsieh, M. C. and Hwu, C., “Explicit Solutions for the Coupled Stretching–Bending Problems of Holes in Composite Laminates,” International Journal of Solids and Structures, Vol. 40, No. 15, pp. 3913-3933, 2003.
    [14] Cheng, Z. Q. and Reddy, J. N., “Laminated Anisotropic Thin Plate with an Elliptic Inhomogeneity,” Mechanics of Materials, Vol. 36, No. 7, pp. 647-657, 2004.
    [15] Becker, W., “Concentrated Forces and Moments on Laminates with Bending Extension Coupling,” Composite Structures, Vol. 30, No. 1, pp. 1-11, 1995.
    [16] Hwu, C., “Green's Function for the Composite Laminates with Bending Extension Coupling,” Composite Structures, Vol. 63, No. 3-4, pp. 283-292, 2004.
    [17] Yin, W. L., “Green's Function of Anisotropic Plates with Unrestricted Coupling and Degeneracy, Part 1: The Infinite Plate,” Composite Structures, Vol. 69, No. 3, pp. 360-375, 2005.
    [18] Chen, P. and Shen, Z., “Green's Functions for an Unsymmetric Laminated Plate with an Elliptic Hole,” Mechanics Research Communications, Vol. 28, No. 5, pp. 519-524, 2001.
    [19] Chen, P. and Nie, H., “Green’s Function for Bending Problem of an Unsymmetrical Laminated Plate with Bending-Extension Coupling Containing an Elliptic Hole,” Archive of Applied Mechanics, Vol. 73, No. 11-12, pp. 846-856, 2004.
    [20] Cheng, Z. Q. and Reddy, J. N., “Green's Functions for an Anisotropic Thin Plate with a Crack or an Anticrack,” International Journal of Engineering Science, Vol. 42, No. 3-4, pp. 271-289, 2004.
    [21] Hwu, C., “Green’s Functions for Holes/Cracks in Laminates with Stretching-Bending Coupling,” ASME Journal of Applied Mechanics, Vol. 72, No. 2, pp. 282-289, 2005.
    [22] Yin, W. L., “Green’s Function of Anisotropic Plates with Unrestricted Coupling and Degeneracy, Part 2: Other Domains and Special Laminates,” Composite Structures, Vol. 69, No. 3, pp. 376-386, 2005.
    [23] Cheng, Z. Q. and Reddy, J. N., “Green’s Functions for Infinite and Semi-Infinite Anisotropic Thin Plates,” ASME Journal of Applied Mechanics, Vol. 70, No. 2, pp. 260-267, 2003.
    [24] Hwu, C. and Tan, C. J., “In-Plane/Out-of-Plane Concentrated Forces and Moments on Composite Laminates with Elliptical Elastic Inclusions,” International Journal of Solids and Structures, Vol. 44, No. 20, pp. 6584-6606, 2007.
    [25] Jones, R. M., Mechanics of Composite Materials, Scripta, Washington, DC., 1974.
    [26] Hwu, C., Hsu, C. L. and Chen, W. R., “Corrective Evaluation of Multi-Valued Complex Functions for Anisotropic Elasticity,” Mathematics and Mechanics of Solids, Vol. 22, No. 10, pp. 2040-2062, 2017.
    [27] Hwu, C. and Yen, W. J., “On the Anisotropic Elastic Inclusions in Plane Elastostatics,” Journal of Applied Mechanics, Vol. 60, No. 3, pp. 626-632, 1993.
    [28] Hwu, C., “Boundary Integral Equations for General Laminated Plates with Coupled Stretching-Bending Deformation,” Proceedings of the Royal Society, Series A, Vol. 466, No. 2116, pp. 1027-1054, 2010.
    [29] Hwu, C. and Chang, H. W., “Coupled Stretching–Bending Analysis of Laminated Plates with Corners Via Boundary Elements,” Composite Structures, Vol. 120, pp. 300-314, 2015.
    [30] Hwu, C. and Chang, H. W., “Singular Integrals in Boundary Elements for Coupled Stretching–Bending Analysis of Unsymmetric Laminates,” Composite Structures, Vol. 132, pp. 933-943, 2015.
    [31] Chang, H. W. and Hwu, C., “Complete Solutions at or near the Boundary Nodes of Boundary Elements for Coupled Stretching-Bending Analysis,” Engineering Analysis with Boundary Elements, Vol. 72, pp. 89-99, 2016.
    [32] Hwu, C., “Boundary Element Formulation for the Coupled Stretching–Bending Analysis of Thin Laminated Plates,” Engineering Analysis with Boundary Elements, Vol. 36, No. 6, pp. 1027-1039, 2012.

    下載圖示 校內:2024-06-01公開
    校外:2024-06-01公開
    QR CODE