| 研究生: |
鄭鈞鴻 Cheng, Chun-Hung |
|---|---|
| 論文名稱: |
應用於低速旋轉機構之雙自由度非接觸磁力升頻轉換壓電能量獵能研究 A Study on a Two-Degree-of-Freedom Piezoelectric Energy Harvester with Non-Contact Magnetic Frequency-Up Conversion for Low-Speed Rotating Systems |
| 指導教授: |
陳重德
Chen, Chung-De |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 壓電獵能器 、振動 、非接觸式激發 、傅立葉展開 、升頻轉換 、低轉速獵能 |
| 外文關鍵詞: | Piezoelectric energy harvester, non-contact excitation, frequency-up conversion, low-speed rotation, broadband response |
| 相關次數: | 點閱:8 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧監測技術的發展,低功耗感測器在風能設備、旋轉機械與離岸結構中逐漸普及。為降低電池維護成本並提升系統自足性,發展具備低頻能量擷取能力的壓電能量獵能器成為一項重要研究課題。本研究針對低速旋轉環境(如離岸風機)設計一具雙自由度之壓電能量獵能系統,透過非接觸式磁力激發與機械升頻轉換結構,使其具備寬頻響應特性與高功率輸出潛力。
本研究採用折回式懸臂樑架構,結合偏心擺裝置進行週期性激發。理論方面以能量法推導系統動態方程,包含偏心擺旋轉運動、磁力作用模型與壓電耦合項,建立完整耦合模型。為提升模擬效率與可解釋性,進一步提出傅立葉餘弦展開之解析解法,並同時建構數值模擬流程。模型可輸出壓電片電壓與功率預測結果,並能依磁力倍頻分量分析模態貢獻。
實驗部分搭建實體系統,量測末端質量、剛性、阻尼、耦合係數與內電容等參數。使用雷射位移計與高速攝影進行動態紀錄,並搭配全橋整流與電容儲能設計,量測不同轉速下之穩態電壓響應與平均功率。實驗結果整體趨勢與模擬預測相符,但在峰值頻率與功率大小上仍存在一定程度差異,顯示模型雖可捕捉主要動態行為,仍有待進一步修正以提升準確性。另觀察到高轉速下,因慣性力影響導致壓電樑等效剛性增加,進而產生自然頻率偏移。此外,激發訊號中亦出現奇數倍頻分量,顯示實際偏心擺之擺盪行為與理論假設(對稱、單一頻率激發)有所出入,進而影響模態激發結果。
本研究亦探討模態分離設計策略,發現透過調整內外側樑之剛性與質量比例,可提升模態響應分離度與功率平衡表現。整體而言,本研究成功建立結合理論、數值與實驗之完整分析流程,並證實雙模態升頻磁力激發系統具備於低速旋轉環境中擷取機械能並轉換為穩定電能之可行性,具潛力應用於離岸風場感測節點與其他分散式能源系統中。
This study develops a two-degree-of-freedom (2DOF) piezoelectric energy harvester for low-speed rotating systems (<3.5 Hz), like offshore wind turbines, using non-contact magnetic frequency-up conversion to enhance broadband response and power output. The system integrates a folded cantilever beam with an eccentric pendulum, employing macro-fiber composite (MFC) materials. A dynamic model was derived via energy methods, using a point-dipole magnetic model and Fourier cosine expansion for power prediction. By using numerical simulations (MATLAB, Simulink), the dynamic behaviors were analyzed at 100–200 rpm, with experiments simulating low-speed conditions to measure voltage and power. Results show consistent voltage and power trends with simulations, though inertial effects and asymmetric pendulum motion caused deviations. The methodology combines theoretical modeling, simulation, and experimental validation. Future work includes optimizing models and circuits for enhanced efficiency and stability in distributed energy systems.
[1] Cheng, K.-S., Ho, C.-Y., & Teng, J.-H. (2020). Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan. Energies, 13(24), 6492.
[2] Chung, H.-S. (2021). Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development. Sustainability, 13(18), 10465.
[3] Gao, M.Z.; Huang, C.H.; Lin, J.C.; Su, W.N. Review of recent offshore wind power strategy in Taiwan: Onshore wind power comparison. Energy Strategy Reviews, 2021, 38, 100747.
[4] Ministry of Economic Affairs, Energy Administration, "3-02 Electricity Generation (National)," in Electricity Statistics Monthly Report, Apr. 2025. [Online]. Available: https://www.esist.org.tw/.
[5] Asim, T.; Islam, S.Z.; Hemmati, A.; Khalid, M.S.U. A Review of Recent Advancements in Offshore Wind Turbine Technology. Energies, 2022, 15(2), 579.
[6]Watson, S. J., Moro, A., Reis, V., Baniotopoulos, C., Barth, S., Bartoli, G., Bauer, F., Boelman, E., Bosse, D., Cherubini, A., Croce, A., Fagiano, L., Fontana, M., Gambier, A., Gkoumas, K., Golightly, C., Iribas Latour, M., Jamieson, P., Kaldellis, J. K., … Wiser, R. (2019). Future emerging technologies in the wind power sector: A European perspective. Renewable & Sustainable Energy Reviews, 113, 109270.
[7] Faiz, M.A.; Taveira-Pinto, F.; Rosa-Santos, P.; et al. Offshore Wind Turbine Operations and Maintenance: A State-of-the-Art Review. Renewable and Sustainable Energy Reviews, 2021, 144, 110886.
[8] Hameed, Z., Vatn, J., & Heggset, J. (2011). Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy, 36(8), 2154–2165
[9] Arslan, T.; Horrocks, D.H.; Erdogan, A.T. Trends in Low Power Digital Signal Processing. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS), 1999, Volume 2, pp. 689–692.
[10] Z. Jiang, C. Bae, J. Kang, S. J. Kim and M. Seok, "Microwatt end-to-End digital neural signal processing systems for motor intention decoding," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 1008-1013
[11] 鐘培嘉 (Pei-Chia Chung). 應用於低轉速旋轉機構之壓電獵能器設計、分析與量測. 國立成功大學機械工程學系, 2023.
[12]Roundy, S., Wright, P. K., & Rabaey, J. M. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144
[13] Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 2006, 17(12), R175–R195.
[14]Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; et al. Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 2008, 96(9), 1457–1486.
[15] Khan, F.U.; Qadir, M.U. State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 2016, 26(10), 103001.
[16] Aljadiri, R. T., Taha, L. Y., & Ivey, P. (2017). Electrostatic Energy Harvesting Systems: A Better Understanding of Their Sustainability. Journal of Clean Energy Technologies, 5(5), 409–416
[17] Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 2007, 16(3), R1–R21.
[18] Safaei, M.; Sodano, H.A.; Anton, S.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Materials and Structures, 2019, 28(11), 113001.
[19] Liu, R., He, L., Liu, X., Wang, S., Zhang, L., & Cheng, G. (2023). A review of collecting ocean wave energy based on piezoelectric energy harvester. Sustainable Energy Technologies and Assessments.
[20] Lazar, I., Rodenbücher, C., Bihlmayer, G., Randall, C. A., Koperski, J., Nielen, L., Roleder, K., & Szot, K. (2023). The Electrodegradation Process in PZT Ceramics under Exposure to Cosmic Environmental Conditions. Molecules, 28(9), 3652.
[21] Ramadan, K. S., Sameoto, D., & Evoy, S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3), 033001.
[22] Wilkie, W.K.; Bryant, R.G.; High, J.W.; et al. Low-cost piezocomposite actuator for structural control applications. Proceedings of SPIE, 2000, 3991, 323–334.
[23] Wu, M., Cao, G., & Xiao, Z. (2025). Polyimide modified epoxy coatings reinforced with functional fillers for enhanced thermal stability and corrosion resistance. Advanced Composites and Hybrid Materials, 8, 172.
[24] Chilabi, H. J., Salleh, H., Al-Ashtari, W., Supeni, E. E., Abdullah, L. C., As’arry, A. B., Md Rezali, K. A., & Azwan, M. K. (2021). Rotational piezoelectric energy harvesting: A comprehensive review on excitation elements, designs, and performances. Energies, 14(11), 3098.
[25] Guan, M., & Liao, W.-H. (2016). Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Conversion and Management, 111, 239–244.
[26] : Li, X.; Hu, G.; Guo, Z.; Wang, J.; Yang, Y.; Liang, J. Frequency Up-Conversion for Vibration Energy Harvesting: A Review. Symmetry 2022, 14, 631.
[27] Miah A. Halim, Jae Y. Park,Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation,Sensors and Actuators A: Physical,Volume 208,2014,Pages 56-65.
[28] Shu, Y.C.; Wang, W.C.; Chang, Y.P. Electrically rectified piezoelectric energy harvesting induced by rotary magnetic plucking. Smart Materials and Structures, 2018, 27(12), 125008.
[29] Twiefel, J., & Westermann, H. (2013). Survey on broadband techniques for vibration energy harvesting. Journal of Intelligent Material Systems and Structures, 24(11), 1291–1302.
[30] J.M. Ramírez, C.D. Gatti, S.P. Machado, M. Febbo. A multi-modal energy harvesting device for low-frequency vibrations.Extreme Mechanics Letters, Vol.22,2018,Pages 1-7,
[31] Gu, L.; Livermore, C. Compact passively self-tuning energy harvesting for rotating applications. Procedia Engineering, 2011, 25, 1569–1572.
[32] Su, W.-J., Lin, J.-H., & Li, W.-C. (2020). Analysis of a cantilevered piezoelectric energy harvester in different orientations for rotational motion. Sensors, 20(4), 1206.
[33] Samuel C. Stanton, Clark C. McGehee, Brian P. Mann. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator, Physica D: Nonlinear Phenomena, Volume 239, Issue 10, 2010, Pages 640-653,
[34] M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, C. Trigona,. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sensors and Actuators A: Physical, Volume 162, Issue 2. 2010. Pages 425-431
[35] Mao, X.; Zhu, H.; Zhang, Y.; et al. A novel outer-inner magnetic two degree-of-freedom piezoelectric energy harvester. Energy Conversion and Management, 2020, 222, 113241.
[36] Wu, H., Tang, L., Yang, Y., & Soh, C. K. (2012). A compact 2 degree-of-freedom energy harvester with cut-out cantilever beam. Japanese Journal of Applied Physics, 51(4S), 04
[37] Zayed, A. A. A., Assal, S. F. M., & El-Bab, A. M. R. F. (2019). Design procedure and experimental verification of a broadband quad-stable 2-DOF vibration energy harvester. Sensors, 19(13), 2893.
[38] Shu, Y.C.; Lien, I.C.; Wu, W.J. 陣列式壓電震動能量擷取系統在不同介面電路下之動態特性分析研究. 國立台灣大學機械工程學系, 2019.
[39] Yung, K. W., Landecker, P. B., & Villani, D. D. (1998). An Analytic Solution for the Force Between Two Magnetic Dipoles. Physical Separation in Science and Engineering, 9(1), 39–52.
[40]Y. -J. Wang, C. -D. Chen and C. -K. Sung, "System Design of a Weighted-Pendulum-Type Electromagnetic Generator for Harvesting Energy From a Rotating Wheel," in IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 754-763, April 2013,
[41]Camacho, J. M. (2013). Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista Mexicana De Fisica E, 59(1), 8–17.
[42] Liao, Y., & Wells, V. L. (2011). Modal parameter identification using the log decrement method and band-pass filters. Journal of Sound and Vibration, 330(21), 5014–5023.
校內:立即公開