簡易檢索 / 詳目顯示

研究生: 邱柏晨
Chiou, Po-Chen
論文名稱: BiFGO-KISS:基於ESKF與雙層迴圈因子圖之即時定位與建圖算法
BiFGO-KISS: Simultaneous Localization and Mapping Algorithm Based on ESKF and Bi-Layers Factor Graph
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 148
中文關鍵詞: 即時定位與建圖點到點最近鄰點搜索多感測器融合濾波因子圖優化
外文關鍵詞: Simultaneous localization and mapping, Point-to-Point ICP, Multi-sensor Fusion Filtering, Factor Graph Optimization
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i 致謝 x 目錄 xi 表目錄 xv 圖目錄 xvi 1 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 前端:幀間匹配方法 3 1.2.2 多元感測器資訊融合濾波 4 1.2.3 後端:因子圖優化 5 1.3 貢獻與算法框架 6 2 算法介紹 8 2.1 基於ICP的算法比較 8 2.2 KISS-ICP 9 2.2.1 點雲去畸變 9 2.2.2 點雲降採樣 11 2.2.3 局部地圖建構與對應點估計 12 2.2.4 資料關聯的自適應閾值 12 3 多感測器融合演算法 14 3.1 卡爾曼濾波器 14 3.1.1 公式推導 14 3.1.2 KF應用範例 18 3.2 擴展式卡爾曼濾波器 20 3.2.1 公式推導 20 3.2.2 EKF應用範例 23 3.3 誤差狀態卡爾曼濾波器 26 3.3.1 公式推導 26 3.3.2 狀態預測 33 3.3.3 狀態更新 33 3.3.4 誤差狀態重置 35 3.4 克利曲線與弗勒內-塞雷座標系定義 36 3.4.1 定義坐標系框架 37 3.4.2 虛擬角速度與線加速度 41 3.5 虛擬資料生成與融合算法模擬 44 3.5.1 Clelia curve軌跡下IMU與GPS虛擬資料融合驗證 44 3.5.2 阿克曼轉向機構與底盤運動學模型 47 3.5.3 阿克曼底盤虛擬數據生成 53 4 後端優化:因子圖 58 4.1 貝葉斯網路與因子圖 58 4.1.1 貝葉斯網路 58 4.1.2 因子圖 60 4.2 平滑與地圖構建 61 4.2.1 觀測模型與機率推理的最小化轉換 61 4.3 矩陣稀疏性與消元 63 4.3.1 矩陣稀疏性 63 4.3.2 消元算法 64 4.3.3 稀疏高斯因子 65 4.3.4 乘積因子 65 4.3.5 QR分解 65 4.3.6 消元順序 68 4.4 增量平滑與地圖構建 69 4.5 位姿圖優化 71 4.5.1 因子圖與位姿圖之關係 71 4.5.2 二維位姿圖優化 73 4.5.3 三維位姿圖優化 78 4.6 地面約束因子 85 4.6.1 Absolute Ground Plane Constrained 85 4.6.2 模擬驗證 94 4.7 雙層迴環因子圖 103 4.7.1 雙層迴圈因子圖架構 103 4.7.2 坡度檢測機制 104 5 虛擬環境驗證 107 5.1 基於ESKF之初始估計驗證 107 5.1.1 Gazebo環境建置 107 5.1.2 Gazebo 控制與感測架構說明 109 5.1.3 模擬結果 110 6 實驗驗證與結果 116 6.1 實驗目的與驗證流程說明 116 6.2 評估指標 119 6.3 誤差比較分析 120 7 總結與未來工作 124 8 參考文獻 125

    1.Smith, R., M. Self, and P. Cheeseman, Estimating uncertain spatial relationships in robotics, in Autonomous robot vehicles. 1990, Springer. p. 167-193.
    2.Durrant-Whyte, H., D. Rye, and E. Nebot. Localization of autonomous guided vehicles. in Robotics Research: The Seventh International Symposium. 1996. Springer.
    3.Davison. Real-time simultaneous localisation and mapping with a single camera. in Proceedings Ninth IEEE International Conference on Computer Vision. 2003. IEEE.
    4.Zhang, J. and S. Singh. LOAM: Lidar odometry and mapping in real-time. in Robotics: Science and systems. 2014. Berkeley, CA.
    5.Cadena, C., et al., Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 2016. 32(6): p. 1309-1332.
    6.Huang, S. and G. Dissanayake, Convergence and consistency analysis for extended Kalman filter based SLAM. IEEE Transactions on robotics, 2007. 23(5): p. 1036-1049.
    7.Pomerleau, F., et al., Comparing ICP variants on real-world data sets: Open-source library and experimental protocol. Autonomous robots, 2013. 34: p. 133-148.
    8.Thrun, S., Probabilistic robotics. Communications of the ACM, 2002. 45(3): p. 52-57.
    9.Bresson, G., et al., Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2017. 2(3): p. 194-220.
    10.Censi, A. An ICP variant using a point-to-line metric. in 2008 IEEE international conference on robotics and automation. 2008. Ieee.
    11.Serafin, J. and G. Grisetti. NICP: Dense normal based point cloud registration. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015. IEEE.
    12.Deschaud, J.-E. IMLS-SLAM: Scan-to-model matching based on 3D data. in 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018. IEEE.
    13.Peterson, L.E., K-nearest neighbor. Scholarpedia, 2009. 4(2): p. 1883.
    14.Chen, Y. and G. Medioni, Object modelling by registration of multiple range images. Image and vision computing, 1992. 10(3): p. 145-155.
    15.Chuang, T., Feature-based registration of LiDAR point clouds. Ph. D. Thesis, 2012.
    16.Biber, P. and W. Straßer. The normal distributions transform: A new approach to laser scan matching. in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). 2003. IEEE.
    17.Ulaş, C. and H. Temeltaş, 3D multi-layered normal distribution transform for fast and long range scan matching. Journal of Intelligent & Robotic Systems, 2013. 71: p. 85-108.
    18.Shan, T. and B. Englot. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. IEEE.
    19.Li, L., et al. SA-LOAM: Semantic-aided LiDAR SLAM with loop closure. in 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021. IEEE.
    20.Guo, H., J. Zhu, and Y. Chen, E-LOAM: LiDAR odometry and mapping with expanded local structural information. IEEE transactions on intelligent vehicles, 2022. 8(2): p. 1911-1921.
    21.Wang, H., et al. F-loam: Fast lidar odometry and mapping. in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021. IEEE.
    22.Oelsch, M., M. Karimi, and E. Steinbach, R-LOAM: Improving LiDAR odometry and mapping with point-to-mesh features of a known 3D reference object. IEEE Robotics and Automation Letters, 2021. 6(2): p. 2068-2075.
    23.Chang, L., X. Niu, and T. Liu, GNSS/IMU/ODO/LiDAR-SLAM integrated navigation system using IMU/ODO pre-integration. Sensors, 2020. 20(17): p. 4702.
    24.Rubanov, V., et al., Development a low-cost navigation technology based on metal line sensors and passive RFID tags for industrial automated guided vehicle. Journal of Engineering and Applied Sciences, 2020. 15(20): p. 2291-2297.
    25.Grisetti, G., C. Stachniss, and W. Burgard, Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE transactions on Robotics, 2007. 23(1): p. 34-46.
    26.Tuna, G., et al. Evaluations of different simultaneous localization and mapping (SLAM) algorithms. in IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. 2012. IEEE.
    27.Schütz, A., D.E. Sánchez-Morales, and T. Pany. Precise positioning through a loosely-coupled sensor fusion of GNSS-RTK, INS and LiDAR for autonomous driving. in 2020 IEEE/ION position, location and navigation symposium (PLANS). 2020. IEEE.
    28.Song, Y., S. Nuske, and S. Scherer, A multi-sensor fusion MAV state estimation from long-range stereo, IMU, GPS and barometric sensors. Sensors, 2016. 17(1): p. 11.
    29.Júnior, G.P.C., et al., EKF-LOAM: An adaptive fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features. IEEE Transactions on Automation Science and Engineering, 2022. 19(3): p. 1458-1471.
    30.Wen, W. and L.-T. Hsu, AGPC-SLAM: Absolute ground plane constrained 3D LiDAR SLAM. NAVIGATION: Journal of the Institute of Navigation, 2022. 69(3).
    31.Kschischang, F.R., B.J. Frey, and H.-A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Transactions on information theory, 2002. 47(2): p. 498-519.
    32.Yang, S., et al. Equality constrained linear optimal control with factor graphs. in 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021. IEEE.
    33.Hao, Y., et al., Fglqr: Factor graph accelerator of lqr control for autonomous machines. arXiv preprint arXiv:2308.02768, 2023.
    34.Yi, B., et al. Differentiable factor graph optimization for learning smoothers. in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021. IEEE.
    35.Vizzo, I., et al., Kiss-icp: In defense of point-to-point icp–simple, accurate, and robust registration if done the right way. IEEE Robotics and Automation Letters, 2023. 8(2): p. 1029-1036.
    36.Kalman, R.E., A new approach to linear filtering and prediction problems. 1960.
    37.Gelb, A., Applied optimal estimation. 1974: MIT press.
    38.Crassidis, J.L. and J.L. Junkins, Optimal estimation of dynamic systems. 2004: Chapman and Hall/CRC.
    39.Cho, S.Y., et al. Observability analysis of the INS/GPS navigation system on the measurements in land vehicle applications. in 2007 International Conference on Control, Automation and Systems. 2007. IEEE.
    40.Gutiérrez, R., et al., A waypoint tracking controller for autonomous road vehicles using ros framework. Sensors, 2020. 20(14): p. 4062.
    41.Dellaert, F. and M. Kaess, Factor graphs for robot perception. Foundations and Trends® in Robotics, 2017. 6(1-2): p. 1-139.

    無法下載圖示 校內:2030-08-19公開
    校外:2030-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE