| 研究生: |
郭哲諺 Kuo, Che-Yen |
|---|---|
| 論文名稱: |
高溫高壓製程之纖維加強鹼激發玻璃營建材料 Fiber-Reinforced Alkali-Activated Glass Construction Materials under High Temperature and High Pressure Process |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 廢容器玻璃 、鹼激發 、陳化製程 、高溫高壓養護 |
| 外文關鍵詞: | waste container glass, alkali-activation, aging process, high temperature and high pressure process |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
市面現有營建材料與隔間板材,大多使用波特蘭水泥膠結材,由於水泥生產過程排放大量二氧化碳,對地球環境造成嚴重衝擊,鹼激發膠結材製造過程屬低耗能且低汙染,根據鹼激發反應機制,富含鋁矽酸鹽之礦物皆可作為原料。廢容器玻璃不易分解,僅能少部分再利用,其餘通常採焚燒或掩埋方式加以處理,進而破壞生態環境,研發一有效再利用途徑成重要課題。本研究將富含鋁、矽氧化物之廢容器玻璃經破碎研磨製成鹼激發原料,採用僅含氫氧化鈉之鹼活化液,同時,添加聚丙烯纖維以增加其韌性,藉由一高溫高壓陳化製程,加速鹼激發玻璃膠結材反應以提高其強度,製成纖維加強鹼激發玻璃膠結材。藉由一系列實驗量測,探討鹼當量、水膠比、纖維添加量、陳化溫度與時間、養護壓力與時間等,對所製成試體抗壓及抗彎強度之影響,評估高溫高壓製程,於製作纖維加強鹼激發玻璃材料,以及纖維加強板材或營建材料之可行性。試驗結果顯示,高溫高壓製程有助於提升鹼激發玻璃膠結材之早期強度及縮短養護時程,若以60℃陳化溫度拌合30分鐘,0.5MPa壓力下養護2小時所製成纖維加強膠結材試體,7天抗壓強度可達45.69MPa,但抗彎強度及其韌性仍待後續研究加以改良提升。
Most of commercially available construction materials and partition panels are made from Portland cement. The production of Portland cement, however, results in a large amount of carbon dioxide emission, causing a serious impact on the ecology and environment of the earth. The manufacturing of alkali-activated binders is low energy consumption and less air pollution. Waste container glass is typically disposed of by burial or by incineration and can be reused as a raw material in the production of alkali-activated binder. Here, waste container glasses containing rich oxides of aluminum and silicon were first crushed and then ground into powders. The alkaline activator was prepared by using sodium hydroxide only. To enhance the toughness of alkali-activated glass binders, polypropylene fibers were introduced. Also, the aging process was used to increase the strengths of fiber-reinforced alkali-activated glass binders because of the acceleration of dissolution reaction of aluminum and silicon ions at higher temperatures. By conducting a series of experiments, the effects of alkali-equivalent dosage, water to binder ratio, fiber volume fraction, aging temperature and duration, curing temperature and duration on the strengths of fiber-reinforced alkali-activated glass binder specimens were investigated. As a result, the feasibility for the high temperature and pressure process employed in the production of fiber-reinforced alkali-activated glass binder specimens were evaluated. Experimental results indicated that the early strengths of alkali-activated glass binders were improved and their curing duration can be shortened when the high temperature and pressure process was used. The 7-day compressive strength of the glass binder specimens increased up to 45.69 MPa when they were mixed at 60°C for 30 minutes and cured at 0.5 MPa pressure for 2 hours. But, the increases in both bending strength and toughness of the glass binder specimens were insignificant.
[1] 趙駿穎,「廢玻璃鹼激發膠結材之研究」,國立成功大學土木工程研究所,碩士論文,2008。
[2] 陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2009。
[3] 許偉哲,「TFT-LCD廢玻璃鹼激發膠結材之研究」,國立成功大學土木工程研究所,碩士論文,2009。
[4] 王宣棫,「TFT-LCD廢玻璃應用於營建板材之可行性研究」,國立成功大學土木工程研究所,碩士論文,2018。
[5] 林宓璇,「高溫高壓製程對鹼激發玻璃膠結材性質之影響」,國立成功大學土木工程研究所,碩士論文,2020。
[6] 陳冠豪,「不同養護條件所製成鹼激發玻璃泡沫材料之研究」,國立成功大學土木工程研究所,碩士論文,2021。
[7] 柯文弼,「高溫高壓製程之鹼激發還原碴營建材料」,國立成功大學土木工程研究所,碩士論文,2022。
[8] Valeria F.F Barbosa, Kenneth J.D MacKenzie, Clelio Thaumaturgo, “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, International Journal of Inorganic Materials, vol. 2(4), pp. 309-317, 2000.
[9] Buchwald, A., Vanooteghem, M., Gruyaert, E., Hilbig, H., Belie, N.D., “Purdocement: application of alkali-activated slag cement in Belgium in the 1950s”, Materials and Structures, vol. 48, pp. 501-511, 2015.
[10] Glukhovsky, V.D., ”Soil silicate-based products and structures”, Gosstroiizdat Publish, Kiev, USSR, 1957.
[11] 徐彬,「固態鹼組分礦渣礦渣水泥的研製及其水化機理和性能的研究」,北京清華大學,博士論文,1995。
[12] Davidovits, J., “Geopolymers Inorganic Polymeric New Materials”, Journal of Thermal Analysis and Calorimetry, vol. 37, no. 8, pp. 1633-1656, 1991.
[13] Fernández-Jiménez, A., Palomo, A., “Characterisation of fly ashes. Potential reactivity as alkaline cements”, FUEL, vol. 82, no. 18, pp. 2259-2265, 2003.
[14] Davidovits, J., Chemistry of geopolymeic systems terminology, Proceeding of Geopolymer 99 Second International Conference, pp. 9-37, 1999.
[15] Van Jaarsveld, J. G.S., Van Deventer, J. S. J.,Lukey, G. C., The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal, vol. 89, pp. 63-73, 2002.
[16] Provis, J.L., “4 - Activating solution chemistry for geopolymers”, Geopolymers : Structures, Processing, Properties and Industrial Applications Woodhead Publishing Series in Civil and Structural Engineering, pp. 50-71, 2009.
[17] Xu, H.,anf Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, vol. 59(3), pp. 247-266, 2000.
[18] Caijun, S., ang Yinyu, L., Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, vol. 19(4), pp. 527-533, 1989.
[19] Tai, S.C., A study on geopolymerization of Kaolinite aluminosilicate materials, Master, Department of Material and Mineral Resources Engineering, National Taipei University of Technology, 2005.
[20] Duxson, P., Provis, J.L., Lukey,G.C., Mallicoat, S.W., Kriven, W.M., and Van Deventer J.S., Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269(1), pp. 47-58, 2005.
[21] Wang, S. D., Pu, X. C.,Scrivener, K. L., Pratt, P. L., Alkali-activated cement and concrete. A review of properties and problem, Advances in Cement Research, vol. 7(27), pp. 93-102, 1995.
[22] Palomo, A., Grutzeck, M. W., Blanco, M. T., Alkali-activated fly ashes A cement for the future, Cement and Concrete Research, vol. 29, pp. 1323-1329, 1999.
[23] 陳泰安,「陳化與養護製程對鹼激發玻璃無機膠結材性質之影響」,國立成功大學土木工程研究所,博士論文,2016。
[24] Cioffi, R., Maffucci, L., Santoro, L., “Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue”, Resources, Conservation and Recycling, vol. 40, no. 1, pp. 27-38, 2003.
[25] Fernandez-Jimenez, A., Palomo, J., and Puertas ,F. Alkali-activated slag mortars: mechanical strength behaviour, Cement and Concrete Research vol. 29(8), pp. 1313-1321, 1999.
[26] 金左培,「鹼激發玻璃材料」,房材與應用,vol. 31, no. 2,pp. 19-20,2003。
[27] 賴琇瑩,「鹼激發廢玻璃膠結材之常溫配比研究」,國立成功大學土木工程研究所,碩士論文,2010。
[28] 柯昌君、龔平,「蒸壓條件下廢玻璃的水熱特性研究」,長江大學學報A (自然科學版),vol. 3, no. 2,pp. 95-99,2006。
[29] ACI 517.2R, “Accelerated Curing of Concrete at Atmospheric Pressure - State of the Art”, 1992.
[30] 詹穎雯、石嘉玉,輕質竹材水泥板於營建工程應用之研究(第二年),內政部建築研究所委託研究報告,國立嘉義大學,2007。
[31] 朱建根,輕質纖維增強水泥板的生產與應用,新型建築材料,第6期,pp. 21-22,1995。
[32] 劉國雄、鄭晃忠、李勝雄、林樹均、葉均蔚,「工程材料科學」修訂版,全華科技圖書股份有限公司,2000。
[33] CNS 3904,建築用板材抗彎及衝擊試驗法。
[34] CNS 3802,纖維水泥板。
[35] CNS13777,纖維強化水泥板。
[36] CNS11272,水硬性水泥密度試驗法。
[37] CNS2924,波特蘭水泥細度檢驗法(氣透儀法)。
[38] CNS1010,水硬性水泥墁料抗壓強度檢驗法。