| 研究生: |
郭泰宏 Kuo, Tai-Hong |
|---|---|
| 論文名稱: |
探討轉錄因子 Zfh1 下游基因之增強子 Identify enhancers of the transcription factor Zfh1-downstream target genes |
| 指導教授: |
劉雅心
Liu, Ya-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 中胚層 、增強子 、轉錄因子 |
| 外文關鍵詞: | mesoderm, enhancer, transcription factor |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在胚胎發育的過程中,中胚層的分化由許多轉錄因子活化或抑制基因的表現來調控。Zfh1 (Zinc finger homeodomain 1) 為一個重要的轉錄因子,在發育過程會表現在整個中胚層和其分化形成的組織。過去研究已知道在 zfh1 突變時,由中胚層分化而成的組織如骨骼肌、平滑肌與心肌會產生缺陷,且脂肪體和生殖腺體細胞的前驅細胞會減少。實驗室先前以 ChIP-seq 找出 Zfh1 在果蠅基因組中結合的位置。為了探討這些在 ChIP-seq 找到的 Zfh1 結合區域是否為啟動子,並調控其附近基因的表現,實驗室先前挑選了 10 個 Zfh1 結合的區域,將其序列接上報導基因 GFP 後,轉殖到果蠅胚胎內。我收集了這 10 個帶有 Zfh1 結合區域序列之果蠅的胚胎,接著以免疫組織染色分析,發現其中有 4 個被 Zfh1 結合區域的序列,都能驅動報導基因表現在中胚層的特定細胞群內,另外 4 個被 Zfh1 結合區域的序列都能驅動報導基因表現外胚層的特定細胞群中;並且重現了這些被 Zfh1 結合區域附近的基因的內源性表現。因此從本篇研究可證明這 8 個被 Zfh1 結合區域的序列為增強子。
During embryogenesis, mesoderm differentiation requires transcription factors for activating or repressing gene expression. Zfh1 (Zinc finger homeodomain 1), a transcription factor, is expressed in the entire mesoderm during mesoderm specification. Previous studies showed that zfh1 mutants have defects in somatic, visceral, and cardiac muscles and also the reduced precursor cell numbers of fat body and somatic gonad. Our lab has used ChIP-seq to obtain the genome-wide Zfh1 binding regions. To determine whether these Zfh1-bound genomic regions are enhancers and regulate the nearby genes, I immunostained embryos from ten transgenic fly lines which carry individual Zfh1-bound regions with reporter gene GFP. I found that eight zfh1 target regions are expressed in specific cell populations of the mesoderm and ectoderm, and individually recapitulate the endogenous expression of their neighboring genes. These results suggest that the eight Zfh1-bound genomic regions are active enhancers that regulate the expression of their nearby genes.
Azpiazu, N., and Frasch, M. (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes & Development 7, 1325-1340.
Azpiazu, N., Lawrence, P.A., Vincent, J.-P., and Frasch, M. (1996). Segmentation and specification of the Drosophila mesoderm. Genes & Development 10, 3183-3194.
Bai, J., and Montell, D. (2002). Eyes Absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 129, 5377.
Banerji, J., Rusconi, S., and Schaffner, W. (1981). Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299-308.
Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118, 719.
Bonini, N.M., Leiserson, W.M., and Benzer, S. (1993). The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72, 379-395.
Bonini, N.M., Leiserson, W.M., and Benzer, S. (1998). Multiple Roles of theeyes absentGene inDrosophila. Developmental Biology 196, 42-57.
Broihier, H.T., Moore, L.A., Van Doren, M., Newman, S., and Lehmann, R. (1998). zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125, 655.
Cripps, R.M., Black, B.L., Zhao, B., Lien, C.L., Schulz, R.A., and Olson, E.N. (1998). The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes & development 12, 422-434.
Geyer, P.K., Green, M., and Corces, V. (1990). Tissue‐specific transcriptional enhancers may act in trans on the gene located in the homologous chromosome: the molecular basis of transvection in Drosophila. The EMBO journal 9, 2247-2256.
Ip, Y.T., Park, R.E., Kosman, D., Yazdanbakhsh, K., and Levine, M. (1992). dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes & development 6, 1518-1530.
Kim, M., Cha, G.-H., Kim, S., Lee, J.H., Park, J., Koh, H., Choi, K.-Y., and Chung, J. (2004). MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development. Molecular and Cellular Biology 24, 573.
Kusch, T., and Reuter, R. (1999). Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. Development 126, 3991.
Lai, Z., Fortini, M.E., and Rubin, G.M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mechanisms of development 34, 123-134.
Lai, Z.-C., Rushton, E., Bate, M., and Rubin, G.M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proceedings of the National Academy of Sciences 90, 4122-4126.
Leptin, M. (1991). twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes & development 5, 1568-1576.
Lomvardas, S., Barnea, G., Pisapia, D.J., Mendelsohn, M., Kirkland, J., and Axel, R. (2006). Interchromosomal Interactions and Olfactory Receptor Choice. Cell 126, 403-413.
Mondal, Bama C., Mukherjee, T., Mandal, L., Evans, Cory J., Sinenko, Sergey A., Martinez-Agosto, Julian A., and Banerjee, U. (2011). Interaction between Differentiating Cell- and Niche-Derived Signals in Hematopoietic Progenitor Maintenance. Cell 147, 1589-1600.
Moore, L.A., Broihier, H.T., Van Doren, M., and Lehmann, R. (1998). Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development 125, 837-844.
Nambu, J.R., Franks, R.G., Hu, S., and Crews, S.T. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63, 63-75.
Nguyen, H.T., and Xu, X. (1998). Drosophila mef2Expression during Mesoderm Development Is Controlled by a Complex Array ofcis-Acting Regulatory Modules. Developmental Biology 204, 550-566.
Novakova, M., and Dolezal, T. (2011). Expression of Drosophila Adenosine Deaminase in Immune Cells during Inflammatory Response. PLOS ONE 6, e17741.
Ong, C.-T., and Corces, V.G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature Reviews Genetics 12, 283.
Petersen, U.M., Kadalayil, L., Rehorn, K.P., Hoshizaki, D.K., Reuter, R., and Engström, Y. (1999). Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. The EMBO Journal 18, 4013-4022.
Postigo, A.A., and Dean, D.C. (1999a). Independent Repressor Domains in ZEB Regulate Muscle and T-Cell Differentiation. Molecular and Cellular Biology 19, 7961.
Postigo, A.A., and Dean, D.C. (1999b). ZEB represses transcription through interaction with the corepressor CtBP. Proceedings of the National Academy of Sciences 96, 6683-6688.
Postigo, A.A., Ward, E., Skeath, J.B., and Dean, D.C. (1999). zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Molecular and cellular biology 19, 7255-7263.
Ray, R., Arora, K., Nusslein-Volhard, C., and Gelbart, W. (1991). The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development 113, 35-54.
Rembold, M., Ciglar, L., Yáñez-Cuna, J.O., Zinzen, R.P., Girardot, C., Jain, A., Welte, M.A., Stark, A., Leptin, M., and Furlong, E.E.M. (2014). A conserved role for Snail as a potentiator of active transcription. Genes & development 28, 167-181.
Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R., and Leptin, M. (1997). Control of cell fates and segmentation in the Drosophila mesoderm. Development 124, 2915-2922.
Sam, S., Leise, W., and Keiko Hoshizaki, D. (1996). The serpent gene is necessary for progression through the early stages of fat-body development. Mechanisms of Development 60, 197-205.
Sandmann, T., Jakobsen, J.S., and Furlong, E.E. (2006). ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nature protocols 1, 2839.
Szuperák, M., Salah, S., Meyer, E.J., Nagarajan, U., Ikmi, A., and Gibson, M.C. (2011). Feedback regulation of Drosophila BMP signaling by the novel extracellular protein Larval Translucida. Development 138, 11.
Waltzer, L., Bataillé, L., Peyrefitte, S., and Haenlin, M. (2002). Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. The EMBO journal 21, 5477-5486.
Weiszmann, R., Hammonds, A.S., and Celniker, S.E. (2009). Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos. Nature protocols 4, 605-618.
Wu, W.H., Kuo, T.H., Kao, C.W., Girardot, C., Hung, S.J., Liu, T., Furlong, E.E., and Liu, Y.H. (2019). Expanding the mesodermal transcriptional network by genome‐wide identification of Zinc finger homeodomain 1 (Zfh1) targets. FEBS letters.
Yin, Z., Xu, X.L., and Frasch, M. (1997). Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development. Development 124, 4971.
Zaffran, S., Küchler, A., Lee, H.H., and Frasch, M. (2001). biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes & development 15, 2900-2915.
校內:2024-08-14公開