| 研究生: |
林業騫 Lin, Yeh-Chien |
|---|---|
| 論文名稱: |
銀鉭系波洛斯凱特型與二氧化鈦光觸媒用於二氧化碳光催化還原反應之效能-光觸媒物性和光學性質之鑑定及光催化活性之初步測定- The Preformance of Ag-Ta Perovskite-type and Titania Photocatalysts for Photocatalytic Reduction of Carbon Dioxide-Characterization of Physical and Photochemical Preliminary Tests of Photocatalytic Activity- |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 二氧化鈦 、鉭酸銀 、溶膠凝膠法 、二氧化碳光催化還原反應 |
| 外文關鍵詞: | AgTaO3, TiO2, sol-gel method, photoreduction of CO2 |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為自製高性能光觸媒用於二氧化碳光催化還原反應。自製光觸媒包括銀-鉭系波洛斯凱特型光觸媒與二氧化鈦,皆採用溶膠凝膠法製備,並植入金屬用以改良原有的觸媒,另一方面,將所製得的觸媒與商用觸媒一起含浸不同比例的銅和鎳金屬進行化學改質。然後作物化特性與光學性質之鑑定(XRD、UV-Vis、PL、SEM及TEM)。
X-光繞射分析顯示,以溶膠凝膠法製備的鉭酸銀觸媒在不同煅燒溫度與植入不同重量比例金屬均具有良好的晶相。由UV-Vis吸收光譜可看出,鉭酸銀與二氧化鈦觸媒其對應能隙分別為3.35eV和3.02eV。鉭酸銀與二氧化鈦以溶膠凝膠法植入銅金屬其吸收邊緣有往長波長位移與可見光區吸收提高之現象。由螢光光譜儀可看出,觸媒植入金屬後在觸媒形成各種缺陷或扭曲,能隙中有其他的能階存在,而有捕捉電子能力從而降低電子-電洞再結合機率。
雖然在觸媒的製備與鑑定方面獲得了一些成果,而且曾有將二氧化碳轉化為甲醇的記錄,但二氧化碳的轉化未有預期的表現,且有再現性不穩的情況。可能是反應器系統上的安裝及操作尚未找出適當的條件。因此未能對所製備的各種光觸媒做比較與進一步的探討。
The main objective of this study is to develop a photocatalyst with high activity for the photocatalytic reduction of carbon dioxide (CO2). The photocatalysts prepared include AgTaO3 (perovskite type catalyst) and titania, Both the photocatalysts were prepared by sol-gel method and were further loaded with Cu and Ni. On the other hand, loading CuO and NiO on self-made catalysts and commercial titania were prepared by impregnation method. The physical and photochemical properties of catalysts were characterized by XRD, UV-Vis, PL, SEM and TEM.
The results of X-ray diffraction indicate that perovskite-type AgTaO3 has a good crystal phase at different calcination temperatures and different metal contents loaded by sol-gel method. UV-vis spectra show that the band gaps of AgTaO3 and TiO2 were 3.35 eV and 3.02 eV, respectively. In addition, AgTaO3 and TiO2 loaded with CuO by sol-gel method caused absorption edge extends to longer wavelengths and increased the light absorption in visible region. PL spectra indicate that adding metal to catalysts would cause defect and distortion, Existence of energy levels in gaps which could trap electrons and hence leaded to lower recombination of electrons and holes.
Although some valuable results were obtained from the characterization of photocatalysts, and methanol was identified in the CO2 photocatalytic reduction and CO2 transforming into hydrocarbons was confirmed as well, however the conversion of CO2 was too low and reproducibility was not good enough. These facts might be due to improper installations and operation of the reactor system. Hence we could not compare the performance of various photocatalysts.
[1] K. Koci, L. Obalova and Z. Lacny, Chemical Papers ,62,1-9 (2008).
[2]徐恆文,工業技術研究院能源與環境研究所《科學發展》,413, 24 (2007).
[3]吳國卿,董玉蘭, 化工資訊, 42, 5 (1999).
[4]蔣孝澈,陳光龍, 化工, 46, (1999).
[5]荒川 裕則, “水分解光觸媒技術之最新動向” (2003).
[6]A. Kudo, H. Kato and I. Tsuji, “Strategies for the
Development of Visible-light-driven Photocatalysts for
Water Splitting”, Chem. Surv. Asia, 7, 31 (2003).
[7]南區奈米科技K-12教育發展中心,“奈米科技-基礎、應用與實作”,高立圖書(2005).
[8]A. L. Linsebigler, L.G.,;and J. T. Yates, Jr., Chem. Rev., 95, 735 (1995).
[9]P. W. Pan, Y. W. Chen, Catal. Commun.,8,1546 (2007).
[10]高濂,鄭珊,張青紅,“奈米氧化鈦光催化材料及應用”,化學工業 (2003).
[11]曾怡享,“奈米金屬氧化鈦觸媒光催化還原二氧化碳”,國立台灣大學化學工程學系碩士論文 (2002).
[12]C.N.R. Rao, J. Gopalarkrishnan and K. Vidyasagar, Indian J. Chem. Sect. A, 23A, 265 (1984).
[13]H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 106, 12441 (2002).
[14]J. Livage and C. Sanchez, “Sol-Gel Chemistry”, J. Non-Cryst . Solids, 145 ,11 (1992).
[15]曹茂盛等,”奈米材料導論”,學富文化.
[16]L. W. Tai and P. A. Lessing, “Modified Resin-Intermediate Processing of Perovskite Powders: PartI Optimization of Polymeric Precursors”, J.Mater. Res. 7-2, 502, (1992).
[17]L. W. Tai and P. A. Lessing, “Modified Resin-Intermediate Processing of Perovskite Powders: PartⅡProcessing for Fine, Nonagglomerated Sr-doped Lanthanum Chromite Powders” J. Mater. Res. 7-2, 511, (1992).
[18]M. P. Pechini, U. S. Patent No. 3, 330, 697 (1967).
[19]M. P. Pechini, U. S. Pat. No.3, 231, 328 (1966).
[20]I .H. Tseng, W.C. Chang, Jeffrey C.S.Wu, Appl. Catal., B, 37, 37 (2002).
[21]Slamet, H. W. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, Catal. Commun, 6, 313 (2005).
[22]T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 277, 637 (1979).
[23]A. H. Yahaya, M. A. Gondal, Chem. Phys. Lett., 400, 206 (2004).
[24]G. R. Dey, A. D.Belapurkar, K. Kishore, J. Photochem. Photobiol., A ,163, 503 (2004).
[25]T. Mizuno, K. Adachi, K.Ohta, A. Saji, J. Photochem. Photobiol., A , 98, 87 (1996).
[26]R. Villares, S. Ikeda, T. Torimoto and B. Ohtani, J. Photochem. Photobiol., A , 160, 121 (2003).
[27]H. Yoneyama, Catal. Today, 39, 169 (1997).
[28]K. Adachi, K. Ohta and T. Mizuno, Sol. Energy, 53,187 (1994).
[29]K. Sayama, and H. Arakawa, Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst. J. Phys. Chem., 97, 531 (1993).
[30]T. F. Xie, D. J. Wang, L. J. Zhu, Y. J. Xu, Mater. Chem. Phys.,70, 103 (2001).
[31]Z. Goren, I. Willner,; A. J. Nelson, A. J. Frank, J. Phys. Chem., 94, 3784 (1990).
[32]I.H. Tseng, W.C. Chang, Jeffrey C.S. Wu, J. Catal., 221, 432 (2004).
[33]P. Usubharatana, D. McMartin and Veawab, Ind. Eng. Chem. Res., 45, 2558 (2006).
[34]R. W. Matthew and S. R. McEvoy, J. Photochem. Photobiol., A , 66, 355 (1992).
[35]S. S. Tan, L. Zou and E. Hu, Catal. Today, 115, 269 (2006).
[36]M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, J. Electroanal. Chem., 396 , 21 (1995).
[37]Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki and S,Yoshida., J. Photochem. Photobiol., A, 126, 117 (1999).
[38]F. Saladin, I. Alxneit, J. Chem. Soc., Faraday Trans., 93, 4159 (1997).
[39]M. A. Fox, M. T. Dulay, Chem. Rev., 93, 341 (1993).
[40]B.J. Liu, T. Torimoto, H. Yoneyama, J. Photochem. Photobiol., A , 108,187 (1997).
[41]C. S. Yuan, J. F. Wu, Sol. Energy Mater. Sol. Cells, 1 (2007).
[42]Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, Chem. Phys., 2, 5302 (2000).
[43]K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, J. Phys. Chem. B, 108, 346 (2004).
[44]Y. Kohno, T. Yamamoto, T. Tanaka, F. Takuzo, J. Mol. Catal. A: Chem., 175, 173 (2001).
[45]K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catal. Today, 74, 241 (2002).
[46]H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi, M. Anpo , Catal. Today, 45, 221 (1998).
[47]M. Anpo , H. Yamashita, K. Ikeue, Y. Fujii, S. G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Catal. Today, 44, 327 (1998).
[48]Y. Shioya, K. Ikeue, M. Ogawa, M. Anpo, Appl. Catal., A, 254, 251 (2003).
[49]Jeffrey C.S. Wu, H. M. Lin, C. L. Lai, Appl. Catal., A, 296, 194 (2005).
[50]K. Chiang, R. Amal, T. Tran, Adv. Environ. Res., 6, 471 (2002).
[51]M. Subrahmanyam, S. Kaneco, Appl. Catal., A, 23, 169 (1999).
[52]林宛嫺, “溶膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究”,國立成功大學化學工程學系碩士論文 (2006).
[53]曾琳雅,“銀-鉭系波洛斯凱特型光觸媒用於水分解水製氫之研究”, 國立成功大學化學工程學系碩士論文 (2006).
[54]鄭婉真, “含銅TiO2觸媒進行二氧化碳光催化還原反應”, 國立台灣大學化學工程學系碩士論文 (2000).
[55]孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,“儀器分析”, 全威圖書 (2004).
[56]P. A. Forsh, A. G. Kazanskii, H. Mell, E. I. Terukov, “Photoelectrical properties of microcrystalline silicon films”, Thin Solid Films, 383, 251 (2001).
[57]D. Dvoranová, V. Brezová, M. Mazúr, M. A. Malati, “Investigations of metal-doped titanium dioxide photocatalysts”, Appl. Catal., B, 37, 91 (2002).
[58]胡哲嘉, “鹼金屬鉭酸鹽光觸媒之結晶結構與分解水反應性的關聯”, 國立成功大學化學工程學系碩士論文 (2007).
[59]R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Lévy, “Electronic structure of anatase TiO2 oxide”, Journal of Applied Physics, 75, 2945 (1994).