簡易檢索 / 詳目顯示

研究生: 李佳儒
Li, Chia-ju
論文名稱: 雙自由度數位控制器之極點配置設計與閉迴路鑑別特性分析
Pole Placement Design of Two-Degrees-of-Freedom Digital Controllers and Analysis of Closed-Loop Identification Properties
指導教授: 黃世宏
Hwang, Shyh-hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 閉迴路鑑別極點配置雙自由度數位控制器
外文關鍵詞: digital controllers, two degrees of freedom, pole placement, identification in closed loop
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RST數位控制器為雙自由度控制器,其中數位濾波器R和S的設計是為了提供負載擾動排除所需的控制器調節輸出,而數位濾波器T的設計是為了達成特定的設定點追蹤特性,換言之,RST結構可同時滿足負載擾動排除和設定點追蹤的不同性能要求。本論文針對RST數位控制器提出一個改良式極點配置設計方法,在指定的強韌性限制下(增益邊限、相位邊限和最大高頻增益),藉由調整三個閉迴路參數,即可得到針對負載擾動排除的最小誤差和之性能指標,然後藉由調整一個迴路外參數以達成滿意的設定點追蹤響應。相較於現有的設計方法而言,本設計法能夠在相同強韌性下獲得最佳的性能指標,亦能更好地處理包含時延、過阻尼及低阻尼、穩定及不穩定零點、積分器及不穩定極點之多種程序動態。
    本論文亦比較閉迴路和開迴路鑑別模型對控制器設計的影響。當模型結構未知時,發現閉迴路鑑別所得模型可以更精確地描述真實受控體的動態行為,因此其模型可設計出較佳性能的控制器。

    RST digital controller are two-degrees-of-freedom controllers. The digital filters R and S are designed to provide the desired regulation of controller output for load disturbance rejection, while the digital filter T is designed to achieve the specified performance of set-point tracking. In other words, the RST structure can satisfy simultaneously the distinct requirements on load disturbance rejection and set-point tracking. This thesis presents an improved design method of pole placement for RST digital controllers. Under the specified constraints on robustness (gain margin, phase margin, and maximum gain for high frequencies), the method can give rise to the minimum error sum performance criterion for load disturbance rejection by adjusting three closed-loop tuning parameters. Then the satisfactory response of set-point tracking can be achieved by adjusting another tuning parameter outside the closed loop. Compared with available methods, the design method can obtain the best performance under the same robustness constraints. Besides, it can better deal with a wide variety of process dynamics including time delays, overdamped and underdamped behaviors, stable and unstable zeros, and integrators and unstable poles.
    This thesis also compares the influence of closed-loop and open-loop identification models on controller design. When the model structure is unknown, it is found that the model identified in closed loop can describe the dynamic behavior of the actual plant more precisely, and hence give rise to a controller design with better performance.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XII 第一章 緒論 1 1.1 研究動機和目的 1 1.2 文獻回顧 4 1.2.1 數位控制器之設計 4 1.2.2 閉迴路鑑別 6 1.3 章節組織 7 第二章 雙自由度數位控制器 8 2.1 RST控制器 8 2.1.1 基本架構 9 2.1.2 負載擾動調節 11 2.1.3 設定點追蹤 14 2.2 極點配置法 17 2.2.1 IMC法 17 2.2.2 Hwang and Lin法 20 2.2.3 改良式方法 22 2.3 強韌性考量 24 2.3.1 開環穩定程序 24 2.3.2 開環不穩定程序 30 2.4 控制器設計步驟 32 第三章 RST控制器之模擬研究 34 第四章 閉迴路鑑別特性 54 4.1 閉迴路鑑別特性介紹 54 4.2 閉迴路鑑別方式 55 4.2.1 閉迴路鑑別架構 55 4.2.2 IV4法 57 4.3 模擬步驟 61 4.4 模擬結果 65 第五章 結論與未來展望 70 參考文獻 72 自述 75

    [1] Landau, I. D.,“The R-S-T Digital Controller Design and Applications,”Control Engineering Practice, 6, 155-165, 1998.

    [2] Landau, I. D., System Identification and Control Design, Prentice Hall, NJ, 1990.

    [3] Garcia, C. E. and M. Morari,“Internal Model Control. 1. A Unifying Review and Some New Results,”Ind. Eng. Chem. Process Des. Dev., 21, 308-323, 1982.

    [4] Landau, I. D.,“Robust Digital Control of Systems with Time Delay (The Smith Predictor Revisited),”Int. J. of Control, 62, 325-347, 1995.

    [5] Hwang, S. H. and M. L. Lin,“Robust Design Method for Discrete-Time Controllers with Simple Structures,” Ind. Eng. Chem. Res., 41, 2705-2715, 2002.

    [6] Richalet, J., A. Rault, J. L. Testud, and J. Papon,“Model Predictive Heuristic Control: Applications to Industrial Processes,”Automatica, 14, 413-428, 1978.

    [7] Cutler, C. R. and B. L. Ramaker,“DMC – A Computer Control Algorithm,”AIChE 1979 Houston Meeting, Paper No. 516, New York, 1979.

    [8] Clarke, D. W. and P. J. Gawthrop,“Self-Tuning Controller,”Proc. IEE., 122, 929-934, 1975.

    [9] Clarke, D. W. and P. J. Gawthrop,“Self-Tuning Control,”Proc. IEE., 126, 633-640, 1979.

    [10] Clarke, D. W., C. Mohtadi, and P. S. Tuffs,“Generalized Predictive Control,”Automatica, 23, 137-148, 1987.

    [11] Clarke, D. W. and C. Mohtadi,“Properties of Generalized Predictive Control,”Automatica, 25, 859-875, 1989.

    [12] Wellstead, P. E., D. Prager, and P. Zanker,“Pole Assignment Self-Tuning Regulator,”Proc. IEE., 126, 781-790, 1979.

    [13] Allidina, A. Y. and F. M. Hughes,“Generalized Self-Tuning Controller with Pole Assignment,”Proc. IEE., 127, 13-18, 1980.

    [14] Lelic, M. A. and M. B. Zarrop,“Generalized Pole-Placement Self-Tuning Controller: Part 1. Basic Algorithm,”Int. J. Control, 46, 547-568, 1987.

    [15] strm, K. J. and B. Wittenmark,“Self-Tuning Controllers Based on Pole-Zero Placement,”Proc. IEE., 127, 120-130, 1980.

    [16] Isermann, R., Digital Control Systems, Volume 1: Fundamentals, Deterministic Control, Springer-Verlag, New York, 1989.

    [17] Gustavsson, I., L. Ljung, and T. Sderstrm,“Identification of Processes in Closed Loop – Identifiability and Accuracy Aspects,”Automatica, 13, 59-75, 1977.

    [18] Hjalmarsson, H., M. Gevers, and F. De Bruyne,“For Model-Based Control Design, Closed Loop Identification Gives Better Performance,”Automatica, 32, 1659-1673, 1996.

    [19] Foressell, U. and L. Ljung,“Closed-Loop Identification Revisited,”Automatica, 35, 1215-1241, 1999.

    [20] Landau, I. D.,“Identification in Closed Loop: A Powerful Design Tool (Better Design Models, Simpler Controllers),”Control Engineering Practice, 9, 51-65, 2001.

    [21] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, John Wiley & Sons, New York, 1989.

    [22] Astrom, K. J. and T. Hagglund,“Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins,”Automatica, 20, 645-651, 1984.

    [23] Coughanowr, D. R., Process Systems Analysis and Control, McGraw-Hill, New York, 1991.

    [24] Ho, W. K., K. W. Lim, and W. Xu,“Optimal Gain and Phase Margin Tuning for PID Controllers,”Automatica, 34, 1009-1014, 1998.

    [25] Anderson, B. D. O. and J. B. Moore, Linear Optimal Control, Prentice Hall, Englewood Cliffs, N.J., 1991.

    [26] Landau, I. D., C. Cyrot, and D. Rey,“Robust Control Design Using The Combined Pole Placement/Sensitivity Function Shaping Method,”European Control Conference, 3, 1693-1697, 1993.

    [27] Ljung, L., System Identification :Theory for The User , Prentice Hall, PTR, 1999.

    [28] Davies, W. D. T., System Identification for Self-Adaptive Control, Wiley-Inter science, New York, 1970.

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE