| 研究生: |
林彥呈 Lin, Yen-Cheng |
|---|---|
| 論文名稱: |
扭轉錐形導線陣列所產生的旋轉電漿噴流之研究 Studies of rotational plasma jets produced by twisted-conical-wire arrays |
| 指導教授: |
張博宇
Chang, Po-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 旋轉電漿噴流 、扭轉錐形導線陣列 、軸向壓縮(Z-pinch)效應 、脈衝功率系統 、X射線針孔相機 |
| 外文關鍵詞: | Rotational plasma jets, Twisted-conical-wire array, Z-pinch, Pulsed-power system, X-ray pinhole camera |
| 相關次數: | 點閱:118 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要進行扭轉錐形導線陣列所產生的旋轉電漿噴流之研究,目的為了了解電漿噴流在不同旋轉方向下的表現有何不同。整個實驗是在 1-kJ 脈衝功率系統上所進行,該系統是由 20 個電容所組成,總電容值為 5 uF,充電電壓為 20 kV。在實驗進行時可產生一個脈衝電流,峰值為 135 ± 1 kA,上升時間為 1592 ± 3 ns。我們使用脈衝電流來驅動 4 根鎢絲導線所組成的錐形導線陣列,該陣列相對於中心軸具有 30° 的傾角。由於不均勻的 軸向壓縮(Z-pinch)效應,在錐形導線陣列的軸方向上會產生超音速電漿噴流。此外,錐形導線陣列頂部相對於底部會向順時針或逆時針方向旋轉,使錐形導線陣列扭轉一個角度,稱為扭轉錐形導線陣列。因此,產生的電漿噴流會隨之旋轉。為了觀察電漿噴流並研究其物理特性,我們構建了一個 1-μs 時間積分的 X 射線針孔相機和一個可見光相機系統,X射線針孔相機負責拍攝X射線範圍內側視方向的圖像,而可見光相機系統負責拍攝可見光範圍內電漿噴流的側視圖和俯視圖。從側視方向拍攝的圖像顯示,實驗中產生了長度為 16 mm 及張角為 20°±2°的電漿噴流。此外,從俯視方向拍攝的圖像顯示,在旋轉的電漿噴流中心會產生一個空洞區域,在錐形導線陣列扭轉順時針方向 30 度時空洞區域的直徑為 1.05±0.03 mm,在扭轉逆時針方向 30 度時直徑為 1.02±0.04。結果表明,旋轉電漿噴流的角動量是守恆的並且能夠阻止錐形導線陣列的內爆,其在電漿內爆動力學扮演重要角色。
In the thesis, we were studying rotational plasma jets produced by twisted-conical-wire arrays. It was to understand how plasma jets performed differently under different rotational directions. Experiments were conducted on a 1-kJ pulsed-power system. The pulsed-power system consists of 20 capacitors with a total capacitance of 5 uF and is charged to 20 kV. The system generates a pulsed current with a peak of 135 ± 1 kA and a rise time of 1592 ± 3 ns. We used the pulsed current to drive the twisted-conical-wire array consisting of 4 tungsten wires. The array had an inclination angle of 30° with respect to the axis. The supersonic plasma jet in the axial direction of the array was generated due to the nonuniform z-pinch effect. In addition, the top of the array was rotated clockwise or counterclockwise with respect to the bottom of the array such that the conical-wire arrays were twisted by an angle and were called twisted-conical-wire arrays. Therefore, the generated plasma jets were rotated. To observe the plasma jet and study its physics, we built a 1-μs time-integrated x-ray pinhole camera and a visible-light camera system capturing images in the range of visible light. The visible-light camera system captures the side view and the top view of the plasma jet. On the other hand, the x-ray pinhole camera takes the side view of the plasma jet. Images taken from the side view showed that plasma jets with a length of 16 mm and the opening angle 20°±2° were generated. Further, images taken from the top view showed that there was a hollow at the center of plasma jet when it was rotated, the diameter was 1.05±0.03 mm with twisted angle of 30 degree in the clockwise direction, and 1.02±0.04 mm with twisted angle of 30 degree in the counterclockwise direction. The angular momentum of the rotational plasma jet was conserved and was capable to stop the implosion of the conical-wire array. It showed that the angular momentum of the rotational plasma played an important role in the dynamic of the plasma implosion.
References
[1] Lucy-Ann McFadden Torrence Johnson Paul Weissman. Encyclopedia of the solar system2nd edition. 14th December 2006.
[2] M. Mitchell. X-pinch plasma dynamics studied with high temporal resolution diagnostics.Physics, 2007.
[3] S. N. Bland J. P. Chittenden A. E. Dangor M. G. Haines K. H. Kwek S. A. Pikuz S. V. Lebedev,F. N. Beg and T. A.Shelkovenko. Effect of discrete wires on the implosion dynamics of wire array z pinches. Physics of Plasmas 8, 3734, 2001.
[4] Emerson M. Pugh Garrett Birkhoff, Duncan P. MacDougall and Sir Geoffrey Taylor. Explosives with lined cavities. Journal of Applied Physics 19, 563, 1948.
[5] S. N. Bland S. C. Bott D. J. Ampleford, S. V. Lebedev, V. L. Kantsyrev A. S. Safronova V. V. Ivanov D. A. Fedin P. J. Laca M. F. Yilmaz V. Nalajala I. Shrestha K. Williamson G. Osborne J. P. Chittenden, C. A. Jennings, and A. Ciardi A. Haboub. Dynamics of conical wire array z-pinch implosions. Physics of Plasmas 14, 102704, 2007.
[6] Chih-Jui Hsieh. Generation of plasma jets using a conical-wire array driven by a pulsed-power system. Master's thesis, National Cheng Kung University, Institute of Space and Plasma Sciences, 2020.
[7] https://baspik.com/eng/images/product/pdf/mcp d 56-12.pdf.
[8] https://www.universetoday.com/wp-content/uploads/2017/03/marsearthmagfields.jpg.
[9] https://public.nrao.edu/news/2017-alma-lmstars/.
[10] J. Kane E. Liang B. A. Remington D. Ryutov, R. P. Drake and W. M. Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. ApJ 518 821, 1999.
[11] I.-Lin Yeh. Theoretical study of the solar wind interacting with an unmagnetized planet in space and in laboratory. Master's thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2019.
[12] D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. The Astro-physical Journal, 518(2):821, 1999.
[13] Mei-Feng Huang Ming-Cheng Jheng Yen-Cheng Lin Jia-Kai Liu Po-Yu Chang, Chih-Jui Hsieh and Sheng-Hua Yang. Rail-gap switch with a multistep high-voltage triggering system. Review of Scientic Instruments 91, 114703 (2020), 2020.
[14] R. E. Madden M. G. Haines G. W. Collins IV1 M. P. Valdivia, T. Zick and F. N. Beg. Study of x-pinch dynamics using a low current (25 ka) and slower current (400 ns) pulse. Physics of Plasmas 20, 042704, 2013.
[15] R. K. Appartaim. X-rays from a microsecond x-pinch. Journal of Applied Physics 114, 083304, 2013.
[16] D. H. Kalantar and D. A. Hammer. Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense z-pinch experiments. Phys. Rev. Lett. 71, 3806, 1993.
[17] S. V. Lebedev, J. P. Chittenden, F. N. Beg, S. N. Bland, A. search by orcid Ciardi, D. Ampleford, S. Hughes, M. G. Haines, A. Frank, E. G. search by orcid Blackman, and T. Gardiner. Laboratory astrophysics and collimated stellar outflows: the production of radiatively cooled hypersonic plasma jets. The Astrophysical Journal, Volume 564, Issue 1, pp. 113-119., 2002.
[18] A. Ciardi S. N. Bland S. C. Bott G. N. Hall N. Naz C. A. Jennings M. Sherlock J. P. Chittenden J. B. A. Palmer A. Frank D. J. Ampleford, S. V. Lebedev and E. Blackman. Supersonic radiatively cooled rotating flows and jets in the laboratory. PRL 100, 035001, 2008.
[19] Will be submitted to physical review accelerators and beams.
[20] https://www.arduino.cc/en/uploads/main/arduinonanomanual23.pdf.
[21] https://www.ti.com/lit/gpn/sn75454b.
[22] https://datasheet.octopart.com/hfbr-2528z-avago-datasheet-11614271.pdf.
[23] http://www.kss.com.tw/e4k/e4-1/c0101-1.asp.
[24] https://www.ftups.com.tw/4-pro-ups-1-ft1(w)-feature.html.
[25] https://www.idealvac.com/files/manuals/varian_sh-110_instruction_manual.pdf.
[26] https://turbovacuum.com/osaka-turbo-pumps/.
[27] http://telab.vuse.vanderbilt.edu/docs/specs/det10a-manual.pdf.
[28] https://www.mightexsystems.com/product/usb3-0-monochrome-or-color-5mp-cmoscamera-8-or-12-bit/.
[29] https://www.raspberrypi.org/documentation/hardware/raspberrypi/.
[30] https://docs.rs-online.com/07f2/a700000006829439.pdf.
[31] https://www.realvnc.com/en/connect/download/viewer/.
[32] J. P. Knauer B .L. Henke and K. Premaratne. The characterization of x-ray photocathodes in the 0.1-10-kev photon energy region. Journal of Applied Physics 52, 1509, 1981.
[33] https://www.newport.com/p/pnh-50.
[34] https://www.americancleanrooms.com/cleanroom-classifications/.
[35] https://datasheets.maximintegrated.com/en/ds/ds1023.pdf.
[36] https://www.analog.com/media/en/technical-documentation/data-sheets/ad7533.pdf.
[37] https://www.ti.com/lit/pdf/scls041.
[38] https://www.matsusada.com/product/hvps1/handy/es/.
[39] https://www.quantel-laser.com/en/products/item/q-smart-850-mj-.html.