簡易檢索 / 詳目顯示

研究生: 劉志勇
Liou, Jr-Yung
論文名稱: 多部風力感應發電機之動態模擬與分析
Dynamic Simulations and Analyses of Multiple Wind Turbine-Induction Generators
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 171
中文關鍵詞: 感應發電機市電靜態虛功補償器
外文關鍵詞: static VAR compensator, grid, induction generator
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文係針對三相感應發電機與市電系統並聯運轉時,分析在系統上可能發生之動態與穩態的特性。文中分別以單台風力感應機連接市電以及四部風力感應機與市電系統連接,探討其之間相互影響。在系統穩態分析方面,本論文分別針對感應發電機的轉子電阻、電容值、市電端電壓、傳輸線(含地下電纜)、發電機內部參數等對系統特性之影響,做一併討論。在動態研究方面,本論文則針對感應發電機瞬間和市電解聯及投入市電時,對系統及感應機發電機造成的影響做評估分析。在暫態研究方面,本論文分析故障發生時對系統產生衝擊及影響。本論文另將靜態無效功率補償器連接至感應機發電機端來控制其端電壓,使其穩定在一定範圍。由本論文的動態及穩態模擬結果,可以針對與市電並聯運轉之多部風力用感應發電系統提供完整的特性研究分析。

     This thesis analyzes both dynamic and steady-state performance of wind turbine-induction generators connected to a utility grid. The studied system contains a single wind induction generator and four serial-operated wind induction generators connected to a utility grid. The steady-state results of the studied system under different values of rotor resistance, excitation capacitor, line impedance, and machine parameters are explored. Dynamic characteristics of the studied wind induction generators subject to sudden connection to and disconnection from the utility grid are studied. Transient responses of the studied wind induction generator under faulted condition are also examined. This thesis also proposes a set of static VAR compensator (SVC) connected to the output terminals of the studied wind induction generator to regulate bus voltage within an acceptable range. From the simulated results, the performance of the studied grid-connected wind turbine-induction generator system can be obtained.

    目 錄     頁數 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 1 1-1 研究背景及動機 1 1-2 文獻回顧 3 1-3 論文內容大綱 5 第二章 風力發電系統概述 8 2-1 風的形成 8 2-2 風的歷史背景 12 2-3 風的動力原理及風機運轉 15 2-4 風機場址特性 19 2-5 風機系統架構 23 2-6 風機機組架構及概念 26 第三章 感應發電機之原理、種類、自激特性分析 40 3-1 前言 40 3-2 感應發電機原理 40 3-3 感應發電機結構及種類 42 3-3-1 簡介 42 3-3-2 鼠籠式感應發電機 44 3-3-2-1 固定頻率操作 44 3-3-2-2 可變頻率操作之電壓源模式 45 3-3-3 繞線式轉子感應發電機 48 3-3-3-1 繞線式轉子感應發電機之轉子繞組電阻性負載         控制 48 3-3-3-2 電力電子驅動雙饋型繞線式轉子感應發電機53 3-4 感應發電機之電容自激現象 57 3-5 感應發電機之等效電路模型及特性分析 60 3-5-1 自激式感應發電機之兩軸模型 60 3-5-2 自激式感應發電機穩態特性分析 65 第四章 感應發電機併聯市電之特性分析 67 4-1 前言 67 4-2 感應發電機併聯市電系統架構 67 4-2-1 單台感應發電機併入市電運轉之動態特性分析70 4-3 單台感應發電機併入市電運轉之動態特性分析 81 4-3-1 無載條件 81 4-3-2 投入負載 86 4-4 單台感應發電機併入市電運轉之故障特性分析 90 4-4-1 單線接地故障 90 4-4-2 三相短路接地故障 93 4-5 四部感應發電機組併入市電運轉之特性分析 98 4-5-1 系統架構 98 4-5-2 穩態分析 98 4-5-3 風力發電併聯市電之影響 100 4-5-4 動態及暫態特性分析 101 第五章 利用靜態虛功補償器控制感應發電機端電壓之特     性分析 122 5-1 前言 122 5-2 彈性交流輸電系統之簡介 122 5-3 電力傳輸原理 124 5-4 彈性交流輸電系統控制器之基本型式 128 5-5 並聯補償原理及架構 137 5-6 SVC控制方法 140 5-7 SVC於風力感應發電機之應用 143 第六章 結論與未來研究方向 150 6-1 結論 150 6-2 未來研究方向 153 參考文獻 154 附錄 158 作者簡介 171

    [1] 東森新聞報網頁http://www.ettoday.com/2005/06/27/320-1809518.htm
    [2] 中央日報網頁
    http://www.cdn.com.tw/daily/2005/07/04/text/940704h2.htm

    [3] 翁萬德,“台灣地區風力時序長程機率模型之建立及風力發電可行性之分析”,行政院國家科學委員會八十八年度電力科技產業學術合作研究計畫成果報告,民國八十八年七月。
    [4] 台灣電力公司網頁http://www.taipower.com.tw/main_1/main_1_1.htm
    [5] S.S. Murthy, C.S. Jha, and P.S. Nagendra Rao, “Analysis of gird connected induction generators driven by hydro/wind turbines under realistic system constraints,” IEEE Transactions on Energy Conversion, vol. 5, no. 1, March 1990, pp. 1-7.
    [6] A. Grauers, “Efficiency of three wind energy generator systems,” IEEE Transactions on Energy Conversion, vol. 11, no. 1, September 1996, pp. 650-657.
    [7] M.A. Ouhrouche, X.D. Do, Q.M. Le, and R. Chaine, “EMTP base simulation of a self-excited induction generator after its disconnection from the grid,” IEEE Transactions on Energy Conversion, vol. 13, no. 1, March 1998, pp. 7-14.
    [8] M.V.A. Nunes, J.A.P. Lopes, H.H. Zurn, U.H. Bezerra, and R.G. Almeida, “Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grid,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, December 2004, pp. 692-701.
    [9] C. Chompoo-inwai, C. Yingvivatanapong, K. Methaprayoon, and W.J. Lee, “Reactive compensation techniques to improve the ride-through capability of wind turbine during disturbance,” IEEE Transactions on Industry Applications, vol. 41, no. 3, May/June 2005, pp. 666-672.
    [10] C.S. Demoulias and P.S. Dokopoulos, “Transient behaviour and self-excitation of wind-driven induction generator after its disconnection from the power grid,” IEEE Transactions on Energy Conversion, vol. 5, no. 2, June 1990, pp. 272-278.
    [11] L. Mihet-Popa, F. Blaabjerg, and I. Boldea, “Wind turbine generator modeling and simulation where rotational speed is the controlled variable,” IEEE Transactions on Industry Applications, vol. 40, no. 1, January/February 2004, pp. 3-10.
    [12] J.L. Rodriguez-Amenedo, S. Arnalte, and J.C. Burgos, “Automatic generation control of a wind fram with variable speed wind turbines,” IEEE Transactions on Energy Conversion, vol. 17, no. 2, June 2002, pp. 279-284.
    [13] W. Lu and B.T. Ooi, “Multiterminal LVDC system for optimal acquisition of power in wind-farm using induction generators,” IEEE Transactions on Power Electronics, vol. 17, no. 4, July 2002, pp. 558-562.
    [14] S. Nomura, Y. Ohata, T. Hagita, H. Tsutsui, S.T. Iio, and R. Shimada, “Wind farms linked by SMES systems,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, June 2005, pp. 1951-1954.
    [15] S.K. Salman and A.-L.J. Teo, “Wind modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator,” IEEE Transactions on Power Systems, vol. 18, no. 2, May 2003, pp. 793-802.
    [16] E.S. Abdin and W. Xu, “Control design dynamic performance analysis of a wind turbine-induction generator unit,” IEEE Transactions on Energy Conversion, vol. 15, no. 1, March 2000, pp. 91-96.
    [17] T. Ahmed, K. Soushin, and M. Nakaoka, “Static VAR compensator-based voltage control implementation of single-phase self-excited induction generator,” IEE Proceedings, Generation, Transmission and Distribution, vol. 152, no. 2, March 2005, pp. 145-156.
    [18] T. Ahmed, O. Noro, E. Hiraki, and M. Nakaoka, “Terminal Voltage regulation characteristics by static VAR compensator for a three-phase self-excited induction generator,” IEEE Transactions on Industry Applications, vol. 40, no. 4, July/August 2004, pp. 978-988.
    [19] 蘇燈城,原動力廠, 全華科技圖書,民國76年。
    [20] http://www.atm.ncu.edu.tw/93/wind/main.asp
    [21] 財團法人工業技術研究院風力推廣計畫網頁http://wind.erl.itri.org.tw/demonstration/Specification.htm
    [22] L.H. Hansen, et al., “Conceptual survey of generators and power electronics for wind turbines,” Riso National Laboratory, Roskilde, Demark, December 2001.
    [23] P. W. Carlin, A. S. Laxson, and E. B. Muljadi, The History and State of the Art of Variable-Speed Wind Turbine Technology. National Renewable Energy Laboratory, Colorado, USA, February 2001.
    [24] 曹慶忠,市電並聯型感應發電機之分析,國立成功大學電機工程研究所碩士論文,民國89年5月。
    [25] M.H. Rashid, Power Electronic: Circuits, Devices, and Applications, 3rd Ed., New York: Prentice Hall, 2003.
    [26] N.G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, New York: IEEE Press, 2000.
    [27] R.M. Mathur and R.K. Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, New York: IEEE Press, 2002.
    [28] P.C. Krause, Analysis of Electric Machinery, IEEE Press, 1994.
    [29] 盧展南、劉承宗、王醴、鄧人豪、陳野正仁,“風力發電對系統衝擊影響之研究”,台灣電力股份有限公司九十一年度研究計畫完成報告,民國九十二年七月。
    [30] 李興傑,閘控串聯電容器在感應發電機控制特性之研究,國立成功大學電機工程研究所碩士論文,民國91年6月。

    無法下載圖示 校內:2006-08-23公開
    校外:2035-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE