簡易檢索 / 詳目顯示

研究生: 佘政軒
She, Cheng-Hsuan
論文名稱: NiCo2S4/還原氧化石墨烯複合材料之製備及其超級電容特性之研究
Fabrication and electrochemical performance of NiCo2S4/reduced graphene oxide nanocomposites for supercapacitors
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: NiCo2S4超級電容還原氧化石墨烯奈米粒子一鍋法
外文關鍵詞: NiCo2S4, supercapacitor, graphene, nanoparticle
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用NiCo2S4/還原氧化石墨烯複合電極材料來改善單一NiCo2S4電極在多次充/放電循環後,因其體積膨脹所導致的電容量快速損失。而還原氧化石墨烯因其優異的導電性、高比表面積以及特殊的蜂巢網狀二維平面結構,非常適合用來作為增加電極材料之導電性及結構穩定性,並降低充/放電循環時產生之機械應變之材料。
    透過Hummer’s method加上熱處理法製備出蓬鬆分散的還原氧化石墨烯粉末,並使用簡便的一鍋法合成純相之NiCo2S4奈米粒子和NiCo2S4/還原氧化石墨烯複合電極材料。實驗結果可發現我們能通過改變不同參數,如:溶劑添加量、S/陽離子比例、反應時間等,有效控制其粒徑組成與成分組成;在電化學實驗中,NiCo2S4/還原氧化石墨烯複合電極材料在1 A/g電流密度下有962.95 F/g的高比電容表現,而單一NiCo2S4電極只有556.65 F/g;在大電流密度15 A/g下,NiCo2S4/還原氧化石墨烯複合電極材料仍有699 F/g的高比電容表現,保持率為74.3%,而單一NiCo2S4電極只有356.9 F/g,保持率僅剩64%。
    最後進行大電流密度(15 A/g)的多次充/放電測試,在經過3000次的循環充放電測試後,NiCo2S4/RGO(~67%)的保持率相較於NiCo2S4(~55%)有顯著的提升,這些結果證實了在添加還原氧化石墨烯之後,能有效減緩其體積膨脹的現象,並增加整體電容量的表現。

    In this study, RGO was used to enhance the NiCo2S4 long cycle stability. The conductivity of the NiCo2S4 electrode can be increased and the mechanical strain during charge and discharge cycles is reduced by wrapping RGO with the excellent conductivity, high specific surface area and special 2D morphological structure.
    A fluffy RGO was prepared by using the Hummer's method and heat treatment, and NiCo2S4 and NiCo2S4/RGO were synthesized by one-pot method. The electrodes were prepared by deposition of NiCo2S4/RGO and NiCo2S4 slurry onto the nickel foam surface. After 3000 times cycle charge-discharge tests, the capacity retention of NiCo2S4/RGO electrode was ~ 74%, which is superior to NiCo2S4 (~ 55%).
    Finally, the as-fabricated asymmetric supercapacitors based on NiCo2S4/RGO//active carbon electrodes demonstrate a high energy density of 31 Wh/kg at a power density of 986.7 W/kg, and can still maintain an energy density of 22.5 Wh/kg at a high power density of 7418 W/kg. It suggests that NiCo2S4/RGO//active carbon electrodes with such high output energies and power densities are highly competitive compared to other recent reports.

    摘要 I 致謝 VIII 目錄 IX 圖目錄 XI 表目錄 XV 第一章 緒論 1 1-1前言 1 1-2研究目的 2 第二章 文獻回顧 3 2-1超級電容器 3 2-1-1歷史背景 3 2-1-2結構簡介 5 2-1-3工作原理 9 2-2電極材料 14 2-2-1碳材 14 2-2-2金屬氧/硫化物 15 2-2-3導電高分子 17 2-3粉體製備 19 2-3-1一鍋合成法 19 2-3-2 十八烯胺(Olyelamine) 20 第三章 實驗方法與步驟 22 3-1實驗藥品 22 3-2實驗步驟 23 3-2-1 氧化還原石墨烯(RGO)製備 23 3-2-2鎳鈷硫奈米粉體(NCS) 製備 24 3-2-3 NCS/RGO製備 25 3-2-4電化學量測 26 3-3 材料特性分析 27 3-3-1 X-ray 繞射儀(XRD) 27 3-3-2 掃描式電子顯微鏡(SEM) 27 3-3-3 穿透式電子顯微鏡(TEM) 27 3-3-4 化學分析電子能譜儀(ESCA-XPS) 27 3-3-5 表面積極奈米孔徑分析儀(BET) 28 3-3-6 微拉曼光譜儀(Raman) 28 3-4 電化學特性分析 28 3-4-1 循環伏安法測試(CV) 28 3-4-2 恆電流充放電測試(GCD) 28 3-4-3 交流阻抗分析(EIS) 29 第四章 結果與討論 30 4-1 RGO材料特性分析 30 4-2不同製程參數之NCS對結晶相和微結構之影響 34 4-2-1以一鍋法合成之純相NiCo2S4粉體分析 34 4-2-2 改變溶劑添加量對NCS奈米粉體生成之影響 37 4-2-3改變前驅比例(S/陽離子)對NCS奈米粉體生成之影響 41 4-2-4改變反應時間對NCS奈米粉體生成之影響 44 4-3不同NCS/RGO比例對結晶相和微結構之影響 49 4-3-1 XRD相鑑定 49 4-3-2 TEM顯微結構 50 4-3-3 SEM微結構 52 4-3-4氮氣吸-脫附等溫曲線 (BET) 53 4-3-5 XPS離子價數分析 54 4-4 不同製程參數之NCS對電化學效果之影響 56 4-4-1不同溶劑添加量 56 4-4-2不同前驅比例(S/陽離子) 59 4-4-3不同反應時間對NCS 63 4-5不同NCS/RGO比例對電化學效果之影響 66 4-5-1循環伏安法(CV) 66 4-5-2充放電測試(GCD) 69 4-5-3長循環測試 71 4-5-4交流阻抗分析(EIS) 72 4-6不對稱超級電容器 73 4-6-1循環伏安法(CV) 73 4-6-2充/放電測試(GCD) 75 4-6-3功率密度與能量密度比較(Ragone Plot) 77 第五章 結論 79 參考文獻 81

    [1] C. Liu, F. Li, L. P. Ma, and H. M. Cheng, "Advanced materials for energy storage," Advanced materials, vol. 22, no. 8, pp. E28-E62, 2010.
    [2] D. V. Ragone, "Review of battery systems for electrically powered vehicles," SAE Technical Paper, 0148-7191, 1968.
    [3] P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, and H. Pang, "Transition metal sulfides based on graphene for electrochemical energy storage," Advanced Energy Materials, vol. 8, no. 15, p. 1703259, 2018.
    [4] Y. P. Gao and K. J. Huang, "NiCo2S4 materials for supercapacitor applications," Chemistry–An Asian Journal, vol. 12, no. 16, pp. 1969-1984, 2017.
    [5] G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu, and H.-M. Cheng, "Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries," Chemistry of Materials, vol. 22, no. 18, pp. 5306-5313, 2010.
    [6] A. A. AbdelHamid, X. Yang, J. Yang, X. Chen, and J. Y. Ying, "Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors," Nano Energy, vol. 26, pp. 425-437, 2016.
    [7] S. Mourdikoudis and L. M. Liz-Marzán, "Oleylamine in nanoparticle synthesis," Chemistry of Materials, vol. 25, no. 9, pp. 1465-1476, 2013.
    [8] K. Mensah-Darkwa, C. Zequine, P. K. Kahol, and R. K. Gupta, "Supercapacitor energy storage device using biowastes: a sustainable approach to green energy," Sustainability, vol. 11, no. 2, p. 414, 2019.
    [9] P. K. Panda, A. Grigoriev, Y. K. Mishra, and R. Ahuja, "Progress in supercapacitors: roles of two dimensional nanotubular materials," Nanoscale Advances, 2020.
    [10] J. Ho, T. R. Jow, and S. Boggs, "Historical introduction to capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, no. 1, pp. 20-25, 2010.
    [11] N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, and M. Sathish, "Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes," Energy & Fuels, vol. 31, no. 1, pp. 977-985, 2017.
    [12] M. Ue, K. Ida, and S. Mori, "Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double‐layer capacitors," Journal of the Electrochemical Society, vol. 141, no. 11, p. 2989, 1994.
    [13] L. Yu and G. Z. Chen, "Ionic liquid-based electrolytes for supercapacitor and supercapattery," Frontiers in chemistry, vol. 7, 2019.
    [14] L. Yu, X. Jin, and G. Z. Chen, "A comparative study of anodic oxidation of bromide and chloride ions on platinum electrodes in 1-butyl-3-methylimidazolium hexafluorophosphate," Journal of Electroanalytical Chemistry, vol. 688, pp. 371-378, 2013.
    [15] 邓梅根, 电化学电容器电极材料研究. Zhong guo ke xue ji shu da xue chu ban she, 2009.
    [16] Y. Cui, X. Liang, J. Chai, Z. Cui, Q. Wang, W. He, X. Liu, Z. Liu, G. Cui, and J. Feng, "High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis," Advanced Science, vol. 4, no. 11, p. 1700174, 2017.
    [17] C. W. Huang, C. A. Wu, S. S. Hou, P. L. Kuo, C. T. Hsieh, and H. Teng, "Gel Electrolyte Derived from Poly (ethylene glycol) Blending Poly (acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors," Advanced Functional Materials, vol. 22, no. 22, pp. 4677-4685, 2012.
    [18] H. v. Helmholtz, "On the conservation of force," of Scientific Memoirs, vol. 1, p. 114, 1862.
    [19] F. Will and C. Knorr, "Untersuchung des Auf‐und Abbaues von Wasserstoff‐und Sauerstoffbelegungen an Platin mit einer neuen instationären Methode," Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, vol. 64, no. 2, pp. 258-269, 1960.
    [20] K. Engelsmann, W. Lorenz, and E. Schmidt, "Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: Part I. Thermodynamics," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 114, no. 1, pp. 1-10, 1980.
    [21] V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, "Mesoporous anhydrous RuO2 as a supercapacitor electrode material," Solid State Ionics, vol. 175, no. 1-4, pp. 511-515, 2004.
    [22] H. Jiang, C. Li, T. Sun, and J. Ma, "A green and high energy density asymmetric supercapacitor based on ultrathin MnO 2 nanostructures and functional mesoporous carbon nanotube electrodes," Nanoscale, vol. 4, no. 3, pp. 807-812, 2012.
    [23] J. Xiao, L. Wan, S. Yang, F. Xiao, and S. Wang, "Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors," Nano letters, vol. 14, no. 2, pp. 831-838, 2014.
    [24] C. Cheng, X. Zhang, C. Wei, Y. Liu, C. Cui, Q. Zhang, and D. Zhang, "Mesoporous hollow ZnCo2S4 core-shell nanospheres for high performance supercapacitors," Ceramics International, vol. 44, no. 14, pp. 17464-17472, 2018.
    [25] H. Wang, K. Zhang, Y. Song, J. Qiu, J. Wu, and L. Yan, "MnCo2S4 nanoparticles anchored N and S dual-doped 3D graphene as a prominent electrode for asymmetric supercapacitors," Carbon, vol. 146, pp. 420-429, 2019.
    [26] J. Liu, J. Sun, and L. Gao, "A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films," The Journal of Physical Chemistry C, vol. 114, no. 46, pp. 19614-19620, 2010.
    [27] C. Xu, J. Sun, and L. Gao, "Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance," Journal of Materials Chemistry, vol. 21, no. 30, pp. 11253-11258, 2011.
    [28] G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, and P. Chen, "Fabrication of Ultralong Hybrid Microfibers from Nanosheets of Reduced Graphene Oxide and Transition‐Metal Dichalcogenides and their Application as Supercapacitors," Angewandte Chemie International Edition, vol. 53, no. 46, pp. 12576-12580, 2014.
    [29] M. Yang, J.-M. Jeong, Y. S. Huh, and B. G. Choi, "High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites," Composites Science and Technology, vol. 121, pp. 123-128, 2015.
    [30] H. Zeng, Y. Zhao, Y. Hao, Q. Lai, J. Huang, and X. Ji, "Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor," Journal of alloys and compounds, vol. 477, no. 1-2, pp. 800-804, 2009.
    [31] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z. X. Shen, "Advanced energy storage devices: basic principles, analytical methods, and rational materials design," Advanced science, vol. 5, no. 1, p. 1700322, 2018.
    [32] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," in Nanoscience and technology: a collection of reviews from Nature journals: World Scientific, 2010, pp. 320-329.
    [33] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, "Electrochemical capacitors based on highly porous carbons prepared by KOH activation," Electrochimica Acta, vol. 49, no. 4, pp. 515-523, 2004.
    [34] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
    [35] Z. S. Wu, D. W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, and H. M. Cheng, "Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors," Advanced Functional Materials, vol. 20, no. 20, pp. 3595-3602, 2010.
    [36] A. Pramanik, S. Maiti, T. Dhawa, M. Sreemany, and S. Mahanty, "High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor," Materials today energy, vol. 9, pp. 416-427, 2018.
    [37] B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, and X. Wang, "Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor," Electrochimica Acta, vol. 314, pp. 32-39, 2019.
    [38] Y. Song, Z. Chen, Y. Li, Q. Wang, F. Fang, Y.-N. Zhou, L. Hu, and D. Sun, "Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo 2 S 4 hexagonal nanosheets prepared by vapor transformation for lithium storage," Journal of Materials Chemistry A, vol. 5, no. 19, pp. 9022-9031, 2017.
    [39] W.-H. Khoh and J.-D. Hong, "Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrolyte," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 456, pp. 26-34, 2014.
    [40] H. Ishikawa, T. Suzuki, and Y. Hayashi, "High‐yielding synthesis of the anti‐influenza neuramidase inhibitor (−)‐oseltamivir by three “one‐pot” operations," Angewandte Chemie, vol. 121, no. 7, pp. 1330-1333, 2009.
    [41] Y. Hou, Z. Xu, and S. Sun, "Controlled synthesis and chemical conversions of FeO nanoparticles," Angewandte Chemie, vol. 119, no. 33, pp. 6445-6448, 2007.
    [42] A. M. Dimiev and J. M. Tour, "Mechanism of graphene oxide formation," ACS nano, vol. 8, no. 3, pp. 3060-3068, 2014.
    [43] Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, and X. Ji, "Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors," Journal of Power Sources, vol. 273, pp. 584-590, 2015.
    [44] 董伟, 杨绍斌, 梁冰, 沈丁, and 吴秀琳, "热还原氧化石墨的可逆储钠性能," 硅酸盐学报, vol. 46, no. 5, p. 619, 2018.
    [45] J. Park, Y. S. Kim, S. J. Sung, T. Kim, and C. R. Park, "Highly dispersible edge-selectively oxidized graphene with improved electrical performance," Nanoscale, vol. 9, no. 4, pp. 1699-1708, 2017.
    [46] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," The Journal of chemical physics, vol. 53, no. 3, pp. 1126-1130, 1970.
    [47] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
    [48] X. Cai, X. Shen, Z. Ji, X. Sheng, L. Kong, and A. Yuan, "Synthesis and remarkable capacitive performance of reduced graphene oxide/silver/nickel-cobalt sulfide ternary nanocomposites," Chemical Engineering Journal, vol. 308, pp. 184-192, 2017.
    [49] J. Zhi, Y. Wang, S. Deng, and A. Hu, "Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes," Rsc Advances, vol. 4, no. 76, pp. 40296-40300, 2014.
    [50] Z.-l. Wang, D. Xu, Y. Huang, Z. Wu, L.-m. Wang, and X.-b. Zhang, "Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries," chemical communications, vol. 48, no. 7, pp. 976-978, 2012.
    [51] Y. Gong, D. Li, Q. Fu, and C. Pan, "Influence of graphene microstructures on electrochemical performance for supercapacitors," Progress in Natural Science: Materials International, vol. 25, no. 5, pp. 379-385, 2015.
    [52] Y. Wen, S. Peng, Z. Wang, J. Hao, T. Qin, S. Lu, J. Zhang, D. He, X. Fan, and G. Cao, "Facile synthesis of ultrathin NiCo 2 S 4 nano-petals inspired by blooming buds for high-performance supercapacitors," Journal of Materials Chemistry A, vol. 5, no. 15, pp. 7144-7152, 2017.
    [53] M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, and Z. Huang, "Construction of a hierarchical NiCo2S4@ PPy core–shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor," ACS applied materials & interfaces, vol. 8, no. 37, pp. 24525-24535, 2016.
    [54] K. Annamalai, L. Liu, and Y. Tao, "Highly exposed nickel cobalt sulfide–rGO nanoporous structures: an advanced energy-storage electrode material," Journal of Materials Chemistry A, vol. 5, no. 20, pp. 9991-9997, 2017.
    [55] N. Li, X. Zhang, S. Chen, X. Hou, Y. Liu, and X. Zhai, "Synthesis and optical properties of CdS nanorods and CdSe nanocrystals using oleylamine as both solvent and stabilizer," Materials Science and Engineering: B, vol. 176, no. 8, pp. 688-691, 2011.
    [56] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature, vol. 404, no. 6773, pp. 59-61, 2000.
    [57] 徐偉翔, "硒化銅銦鎵奈米粉體與燒結體之合成及特性研究," 2014.
    [58] S. Chen, X. Zhang, Q. Zhang, and W. Tan, "Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods," Nanoscale research letters, vol. 4, no. 10, p. 1159, 2009.
    [59] K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, "Shape control of CdS nanocrystals in one-pot synthesis," The Journal of Physical Chemistry C, vol. 111, no. 6, pp. 2447-2458, 2007.
    [60] Z. Li, Ö. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, and A. Mews, "Controlled synthesis of CdSe nanowires by solution–liquid–solid method," Advanced Functional Materials, vol. 19, no. 22, pp. 3650-3661, 2009.
    [61] K. H. Park, K. Jang, S. Kim, H. J. Kim, and S. U. Son, "Phase-controlled one-dimensional shape evolution of InSe nanocrystals," Journal of the American Chemical Society, vol. 128, no. 46, pp. 14780-14781, 2006.
    [62] W. Shi, J. Zhu, X. Rui, X. Cao, C. Chen, H. Zhang, H. H. Hng, and Q. Yan, "Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced Li storage performances," ACS applied materials & interfaces, vol. 4, no. 6, pp. 2999-3006, 2012.
    [63] H. H. Yu, Y. He, Y. L. Wang, and X. X. Xue, "Synthesis of Fine Silica Particles from Iron Ore Tailings Using Water-in-Oil Emulsion," in Advanced Materials Research, 2011, vol. 183: Trans Tech Publ, pp. 1717-1721.
    [64] Y. Liang, Y. Li, H. Wang, and H. Dai, "Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis," Journal of the American Chemical Society, vol. 135, no. 6, pp. 2013-2036, 2013.
    [65] D. Zhang, W. He, Z. Zhang, and X. Xu, "Structure-design and synthesis of Nickel-Cobalt-Sulfur arrays on nickel foam for efficient hydrogen evolution," Journal of Alloys and Compounds, vol. 785, pp. 468-474, 2019.
    [66] Z. Li, X. Ji, J. Han, Y. Hu, and R. Guo, "NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: in-situ synthesis and enhanced capacitive performance," Journal of colloid and interface science, vol. 477, pp. 46-53, 2016.
    [67] H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, and Y. Ruan, "NiCo 2 S 4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors," CrystEngComm, vol. 15, no. 38, pp. 7649-7651, 2013.
    [68] C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, and W. Huang, "Electrochemically synthesis of nickel cobalt sulfide for high‐performance flexible asymmetric supercapacitors," Advanced Science, vol. 5, no. 2, p. 1700375, 2018.
    [69] A. Pramanik, S. Maiti, M. Sreemany, and S. Mahanty, "Carbon doped MnCo2S4 microcubes grown on Ni foam as high energy density faradaic electrode," Electrochimica Acta, vol. 213, pp. 672-679, 2016.
    [70] X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer, and J. Liu, "Optimization of mesoporous carbon structures for lithium–sulfur battery applications," Journal of Materials Chemistry, vol. 21, no. 41, pp. 16603-16610, 2011.
    [71] S. G. Mohamed, I. Hussain, and J.-J. Shim, "One-step synthesis of hollow C-NiCo 2 S 4 nanostructures for high-performance supercapacitor electrodes," Nanoscale, vol. 10, no. 14, pp. 6620-6628, 2018.
    [72] Y.-Y. Chen, P. Dhaiveegan, M. Michalska, and J.-Y. Lin, "Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors," Electrochimica Acta, vol. 274, pp. 208-216, 2018.
    [73] L. Mei, T. Yang, C. Xu, M. Zhang, L. Chen, Q. Li, and T. Wang, "Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors," Nano Energy, vol. 3, pp. 36-45, 2014.
    [74] Y. Wang, Y. Song, and Y. Xia, "Electrochemical capacitors: mechanism, materials, systems, characterization and applications," Chemical Society Reviews, vol. 45, no. 21, pp. 5925-5950, 2016.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE