| 研究生: |
錢鵬如 Chien, Peng-Ju |
|---|---|
| 論文名稱: |
胸腺細胞自發性凋亡的分子機轉之探討及鋰鹽之抗凋亡作用 Study on the molecular mechanism of spontaneous thymocyte apoptosis and the anti-apoptotic effect of lithium |
| 指導教授: |
林以行
Lin, Yee-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 胸線細胞自發性凋亡 、鋰鹽 |
| 外文關鍵詞: | Lithium, spontaneous thymocyte apoptosis |
| 相關次數: | 點閱:44 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在胸腺發育的過程,有大部分的胸腺細胞其接受體 (T cell receptor, TCR) 未成功完成重組 (rearrangement) 或與自身MHC/peptide親合力太低,因而缺乏經由TCR所提供的保護訊息,則胸腺細胞會進行凋亡 (apoptosis) 而予以清除。經由體外培養 (in vitro) 的方式,胸腺細胞會發生自發性凋亡 (spontaneous thymocyte apoptosis, STA) 也許可以模擬胸腺細胞在體內發生的情況。從我們實驗結果得知不同品系的小鼠,包括BALB/c、C3H/HeN以及B57BL/6的胸腺細胞發生自發性凋亡是一個普遍的過程。鋰鹽 (lithium) 是用於治療躁鬱症的臨床藥物,在neurodegenerative的刺激下可以保護神經細胞,具有抗細胞凋亡的功能。本研究希望探討STA發生的分子機轉以及鋰鹽在STA模式下抗凋亡的角色。首先我們將胸腺細胞處理不同caspase的抑制劑,包括caspase-1、-2、-3、-8以及廣效性caspase抑制劑都可以阻斷STA,然而,STA的發生卻不會受到caspase-9抑制劑以及維持粒線體膜通透性穩定的藥物bongkrekic acid、cyclosporin A所抑制,此外,直至12小時才偵測到粒線體膜電位有降低的情形。從以上結果得知早期是需要caspase-2、-8以及-3的活化而且是經由mitochondria-independent的路徑導致。我們也觀察到STA的發生伴隨acid sphingomyelinase (ASM) 表現以及ceramide產生,另外,利用chlorpromazine hydrochloride抑制ASM也可以降低STA和caspase-3的活性。有趣的是,鋰鹽可以抑制STA和降低caspase活性,然而對於ASM的表現並沒有任何影響。另一方面,鋰鹽被視為是GSK-3抑制劑,若使用GSK-3抑制劑SB415286對STA同樣有抑制的作用,證明STA發生是GSK-3依賴性。進一步的實驗觀察到GSK-3在鋰鹽作用下Ser-9磷酸化增加而降低活性。有趣的是,鋰鹽保護胸腺細胞凋亡在加入p38 MAPK抑制劑SB203580後被阻礙,但是加入MEK/ERK、PI3K/Akt以及JNK/SAPK抑制劑對於鋰鹽的保護作用並無影響。鋰鹽的處理可以增加p38 MAPK的磷酸化,進一步的研究顯示p38 MAPK抑制劑SB203580可以阻斷鋰鹽去調控GSK-3磷酸化的作用。根據這些結果我們推測鋰鹽可以經由調控p38 MAPK使GSK-3的活性降低以及抑制caspase cascade的活化來防止STA發生。綜合本論文的研究結果,我們認為STA發生和ASM/ceramide的產生以及caspase活化的參與有關,而鋰鹽保護細胞免於凋亡的機制是透過活化p38 MAPK以及降低GSK-3的活性來達成。
Large number of cells which have not successfully completed TCR (T cell receptor) rearrangement or have low affinity for self MHC/peptide are eliminated by apoptosis during thymus development. Spontaneous thymocyte apoptosis (STA) may, at least in part, mimic this process in vitro. Results showed that STA was a common process in different strains of mice, including BALB/c, C3H/HeN, and B57BL/6. Lithium, a common drug used for bipolar disorder, confers cell protection in response to neurodegenerative stimuli. An anti-apoptotic role of lithium has been suggested. In this study, the molecular mechanisms of STA and the anti-apoptotic effects of lithium were studied. Mouse thymocytes treated with caspase inhibitors, including caspase-1 (zYVAD-fmk), -2 (zVDVAD-fmk), -3 (zDEVD-fmk), -8 (zIETD-fmk), and pan caspase inhibitor zVAD-fmk, could prevent STA. However, STA was not inhibited by caspase-9 inhibitor zLEHD-fmk and mitochondrial transmembrane potential pore stabilizers, bongkrekic acid and cyclosporin A. In addition, the reduction of mitochondrial transmembrane potential could not be detected until 12 h. Our results suggested the dependence of caspase-2, -8, and -3 activation and the independence of mitochondrial pathway in early stage of STA. We had also observed acid sphingomyelinase (ASM) expression and ceramide generation in STA. Consistent with this result, inhibition of ASM by chlorpromazine hydrochloride could reduce STA and caspase-3 activation. Interestingly, lithium was able to inhibit STA and decrease caspase activity. Nevertheless, lithium could not reduce ASM production. To mimic the GSK-3 inhibition of lithium, specific GSK-3 inhibitor SB415286 was used. Results confirmed the dependence of GSK-3 in STA. We observed GSK-3 phosphorylation on Ser-9 and inactivation by lithium. Interestingly, results showed that only p38 MAPK inhibitor SB203580 could suppress lithium-conferred protection from STA, but MEK/ERK, PI3K/Akt, and JNK/SAPK inhibitors had no effect. Lithium treatment was able to phosphorylate p38 MAPK. Further study indicated that treatment with p38 MAPK inhibitor SB203580 blocked lithium-mediated effect of GSK-3 phosphorylation. Based on these results, we suggest that lithium could regulate p38 MAPK-mediated GSK-3 inactivation and caspase cascade activation to prevent the induction of STA. The findings in the present study may reveal the production of ASM/ceramide and the involvement of caspase activation in STA and that lithium protects cells from death is mediated by a mechanism of p38 MAPK activation and GSK-3 inactivation.
Alvarado-Kristensson, M., Melander, F., Leandersson, K., Ronnstrand, L., Wernstedt, C., Andersson, T. p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J. Exp. Med. 199:449-58, 2004.
Barnhart, B. C., Alappat, E. C., Peter, M. E. The CD95 type I/type II model. Semin Immunol. 15:185-93, 2003.
Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608-18, 2003.
Chalecka-Franaszek, E., Chuang, D. M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. 96:8745-50, 1999.
Chao, W., Shen, Y., Li, L., Rosenzweig, A. Importance of FADD signaling in serum deprivation- and hypoxia-induced cardiomyocyte apoptosis. J. Biol. Chem. 277:31639-45, 2002.
Chen, R.W., Chuang, D. M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem. 274:6039-42, 1999.
Chuang, D. M., Chen, R. W., Chalecka-Franaszek, E., Ren, M., Hashimoto, R., Senatorov, V., Kanai, H., Hough, C., Hiroi, T., Leeds, P. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 4:129-36, 2002.
Greenstein, S., Ghias, K., Krett, N. L., Rosen, S. T. Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin. Cancer Res. 8:1681-94, 2002.
Cuenda, A., Dorow, D. S. Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1. Biochem. J. 333:11-5, 1998.
Embi, N., Rylatt, D. B., Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107:519-27, 1980.
Foltz, I. N., Lee, J. C., Young, P. R., Schrader, J. W. Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 272:3296-301, 1997.
Freshney, N. W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J., Saklatvala, J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78:1039-49, 1994.
Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R. J., Luo, Y., Han, J. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295:1291-4, 2002.
Gomez del Arco, P., Martinez-Martinez, S., Maldonado, J. L., Ortega-Perez, I., Redondo, J. M. A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem. 275:13872-8, 2000.
Grassme, H., Cremesti, A., Kolesnick, R., Gulbins, E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457-70, 2003.
Gray, N. A., Zhou, R., Du, J., Moore, G. J., Manji, H. K. The use of mood stabilizers as plasticity enhancers in the treatment of neuropsychiatric disorders. J. Clin. Psychiatry 5:3-17, 2003.
Grimes, C. A., Jope, R. S. The multifaceted roles of glycogen synthase kinase 3 in cellular signaling. Prog. Neurobiol. 65:391-426, 2001.
Han, J., Lee, J. D., Bibbs, L., Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808-11, 1994.
Hartigan, J. A., Johnson, G. V. Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3-dependent pathway. J. Biol. Chem. 274:21395-401, 1999.
Hazzalin, C. A., Cano, E., Cuenda, A., Barratt, M. J., Cohen, P., Mahadevan, L. C. p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr. Biol. 6:1028-31, 1996.
Hemmings, B. A., Resink, T. J., Cohen, P. Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism. FEBS Lett. 150:319-24, 1982.
Hetman, M., Cavanaugh, J. E., Kimelman, D., Xia, Z. Role of glycogen synthase kinase-3 in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20:2567-74, 2000.
Hofmann, K., Dixit, V. M. Ceramide in apoptosis--does it really matter? Trends Biochem. Sci. 23:374-7, 1998.
Huang, C., Ma, W. Y., Maxiner, A., Sun, Y., Dong, Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J. Biol. Chem. 274:12229-35, 1999.
Huwiler, A., Kolter, T., Pfeilschifter, J., Sandhoff, K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta. 1485:63-99, 2000.
Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90-4, 1997.
Janknecht, R., Hunter, T. Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J. 16:1620-7, 1997.
Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J. A., Lin, S., Han, J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J. Biol. Chem. 271:17920-6,1996.
Jope, R. S., Johnson, G. V. W. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29:95-102, 2004.
Kim, L., Liu, J., Kimmel, A. R. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99:399-408, 1999.
Klein, P. S., Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. 93:8455-9, 1996.
Kopnisky, K. L., Chalecka-Franaszek, E., Gonzalez-Zulueta, M., Chuang, D. M. Chronic lithium treatment antagonizes glutamate-induced decrease of phosphorylated CREB in neurons via reducing protein phosphatase 1 and increasing MEK activities. Neuroscience 116:425-35, 2003.
Kroemer, G., Reed, J. C. Mitochondrial control of cell death. Nat. Med. 6:513-9, 2000.
Lepine, S., Lakatos, B., Courageot, M. P., Le Stunff, H., Sulpice, J. C., Giraud, F. Sphingosine contributes to glucocorticoid-induced apoptosis of thymocytes independently of the mitochondrial pathway. J. Immunol. 173:3783-90, 2004.
Lesort, M., Jope, R. S., Johnson, G. V. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3 and Fyn tyrosine kinase. J. Neurochem. 72:576-84, 1999.
Li, J., Rabinovich, B. A., Hurren, R., Cosman, D., Miller, R. G. Survival versus neglect: redefining thymocyte subsets based on expression of NKG2D ligand(s) and MHC class I. Eur. J. Immunol. 35:439-48, 2005.
Li, X., Bijur, G. N., Jope, R. S. Glycogen synthase kinase-3, mood stabilizers, and neuroprotection. Bipolar Disord. 4:137-44, 2002.
Li, Z., Jiang, Y., Ulevitch, R. J., Han, J. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228:334-40, 1996.
Lin, C. F., Chen, C. L., Chang, W. T., Jan, M. S., Hsu, L. J., Wu, R. H., Tang, M. J., Chang, W. C., Lin, Y. S. Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramide and etoposide-induced apoptosis. J. Biol. Chem. 279:40755-61, 2004.
Lin, C. F., Chen, C. L., Chang, W. T., Jan, M. S., Hsu, L. J., Wu, R. H., Fang, Y. T., Tang, M. J., Chang, W. C., Lin, Y. S. Bcl-2 rescues ceramide- and etoposide-induced mitochondrial apoptosis through blockage of caspase-2 activation. J. Biol. Chem. 280:23758-65, 2005.
Manji, H. K., Moore, G. J., Chen, G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry 46:929-40, 1999.
Manke, I. A., Nguyen, A., Lim, D., Stewart, M. Q., Elia, A. E., Yaffe, M. B. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17:37-48, 2005.
Marchetti, M. C., Di Marco, B., Cifone, G., Migliorati, G., Riccardi, C. Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood 101:585-93, 2003.
Micheau, O., Solary, E., Hammann, A., Dimanche-Boitrel, M. T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J. Biol. Chem. 274:7987-92, 1999.
Mora, A., Sabio, G., Risco, A. M., Cuenda, A., Alonso, J. C., Soler, G., Centeno, F. Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cell Signal. 14:557-62, 2002.
Moriguchi, T., Kuroyanagi, N., Yamaguchi, K., Gotoh, Y., Irie, K., Kano, T., Shirakabe, K., Muro, Y., Shibuya, H., Matsumoto, K., Nishida, E., Hagiwara, M. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271:13675-9, 1996.
Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., Gillieron, C., Davies, K., Ashworth, A., Arkinstall, S. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271:27205-8, 1996.
Nonaka, S., Chuang, D. M. Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport 9:2081-4, 1998.
Nonaka, S., Hough, C. J., Chuang, D. M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. 95:2642-7, 1998.
Ono, K., Han, J. The p38 signal transduction pathway: activation and function. Cell Signal. 12:1-13, 2000.
Palmer, E. Negative selection--clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3:383-91, 2003.
Pap, M., Cooper, G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273:19929-32, 1998.
Park, J. M., Greten, F. R., Li, Z. W., Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048-51, 2002.
Pazirandeh, A., Xue, Y., Rafter, I., Sjovall, J., Jondal, M., Okret, S. Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J. 13:893-901, 1999.
Philchenkov, A. Caspases: potential targets for regulating cell death. J. Cell Mol. Med. 8:432-44, 2004.
Porras, A., Zuluaga, S., Black, E., Valladares, A., Alvarez, A. M., Ambrosino, C., Benito, M., Nebreda, A. R. P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol. Biol. Cell. 15:922-33, 2004.
Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., Hunt, T., Nebreda, A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027-37, 1994.
Ruvolo, P. P. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 47:383-92, 2003.
Rylatt, D. B., Aitken, A., Bilham, T., Condon, G. D., Embi, N., Cohen, P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur. J. Biochem. 107:529-37, 1980.
Ryves, W. J., Harwood, A. J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280:720-5, 2001.
Savino, W., Dardenne, M. Neuroendocrine control of thymus physiology. Endocr. Rev. 21:412-43, 2000.
Stokoe, D., Engel, K., Campbell, D. G., Cohen, P., Gaestel, M. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett. 313:307-13, 1992.
Takashima, A., Noguchi, K., Sato, K., Hoshino, T., Imahori, K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. 90:7789-93, 1993.
Takekawa, M., Maeda, T., Saito, H. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 17:4744-52, 1998.
Tan, Y., Rouse, J., Zhang, A., Cariati, S., Cohen, P., Comb, M. J. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15:4629-42, 1996.
Thorburn, A. Death receptor-induced cell killing. Cell Signal. 16:139-44, 2004.
Vacchio, M. S., Papadopoulos, V., Ashwell, J. D. Steroid production in the thymus: implications for thymocyte selection. J. Exp. Med. 179:1835-46, 1994.
Wada, T., Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838-49, 2004.
Wei, H., Qin, Z. H., Senatorov, V. V., Wei, W., Wang, Y., Qian, Y., Chuang, D. M. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington's disease. Neuroscience 106:603-12, 2001.
Woodgett, J. R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9:2431-8, 1990.
Zhang, F., Phiel, C. J., Spece, L., Gurvich, N., Klein, P. S. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J. Biol. Chem. 278:33067-77, 2003.
Zhang, J., Mikecz, K., Finnegan, A., Glant, T. T. Spontaneous thymocyte apoptosis is regulated by a mitochondrion-mediated signaling pathway. J. Immunol. 165:2970-4, 2000.
Zhao, M., New, L., Kravchenko, V. V., Kato, Y., Gram, H., di Padova, F., Olson, E. N., Ulevitch, R. J., Han, J. Regulation of the MEF2 family of transcription factors by p38. Mol. Cell Biol. 19:21-30, 1999.