簡易檢索 / 詳目顯示

研究生: 林昌翰
Lin, Chang-Han
論文名稱: 二維中值演算法的硬體電路設計
The hardware implementation of 2D median filter algorithm
指導教授: 陳培殷
Chen, Pei-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 30
中文關鍵詞: 低成本實時運算二維中值濾波器
外文關鍵詞: low cost, real time, 2D median filter
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,中值濾波器的應用越來越多了,不管是在音訊上或者是在影像上的應用,最經典就是去除椒鹽雜訊,因為不管是影像或者是音訊皆可能會有椒鹽雜訊產生,
    而本文主要在討論用於影像除雜訊相關的中值濾波器設計。
    因為影像具有二維特性,本文主要討論”二維中值濾波器”,使用二維中值濾器對影像進行處理,相較於用傳統的”一維中值濾波器”進行影像處理可以減少輸入與輸出時不必要的時序延遲,可使每個時序的中值輸出皆為有效的輸出,可以增加濾波器的
    產出。
    在去除椒鹽雜訊的應用時使用不同的sliding window大小的中值濾波器處理會有不同的結果,sliding window較大可以去除較多雜訊,sliding window較小可以減少模糊,可以依照需求做選擇,本文提出一種可適用各種大小sliding window的中值濾波器設計方法,並實作了 3*3, 5*5 ,7*7 ,三種不同sliding window大小的中值濾波器,而且因為此架構可以平行處理及 pipeline ,三種不同sliding window大小都可以達到real-time的處理速度。
    本文設計了讓部分元件重複使用的方法,使架構在3*3、5*5、7*7的sliding window下,在相同產出量下,皆比其他paper所提出的架構在的成本都還要少,並且同時具備不低於其他paper架構的工作效率。
    所有的電路都是使用Verilog 硬體描述語言來實作,以SYNOPSYS Design Compiler及Artisan TSMC 90nm標準元件庫進行合成,該電路在3*3 Sliding Windows ,8bit資料,1倍產出時,僅需要4931um2的面積,工作時脈可以達到2000MHz,吞吐量(throughputs)則為每秒2000x106個中值,平均每秒可以處理305張(3200×2048)大小的
    畫面。與其他電路實作的論文相比,本文的電路成本較低且能在相同或較短的時間內處理完一張圖片。

    In recent years, the application of the median filter has been increasing. Whether it is in the application of audio or video, the most classic is to remove the salt and pepper noise, because both of them may cause salt and pepper noise for several reasons. This article mainly discusses the design of median filter for image noise removal.
    In order to meet the two-dimensional property of the image, this article mainly discusses the "two-dimensional median filter". Instead of 1D median filter, using 2D median filter for image process can reduce the unnecessary timing delay with output and input. We can improve the throughput of the filter.
    In the application of removing salt and pepper noise, the use of different sliding window sizes will have different results. A larger sliding window can remove more noise, a smaller sliding window can reduce blurring. This paper proposes a median filter design method applicable to various sizes sliding windows, and implements median filters with 3*3, 5*5, 7*7 sliding window. Because this architecture can be parallel processing and pipeline, all median of three different sizes can achieve real-time processing speed.
    This paper present a method to reuse some of the unit. So the circuit need lower cost than other proposed under the same throughput and sliding window size.
    All circuits are implemented using Verilog hardware description language, and synthesized by SYNOPSYS Design Compiler and Artisan TSMC 90nm standard cell library. This design in 3*3 sliding window, 8bit data, and 1 throughput per cycle only require the area is 4931 um2 . The working frequency is 2000MHZ, and produce 2000*106 medians per second, in other word it can process 305 frames which image size is 3200*2048 per cycle. Compare with other paper proposed, need lower cost and process a picture in the same or shorter time.

    摘要 I ABSTRACT II CONTENTS III FIGURE LIST V TABLE LIST VI EQUATION LIST VI CHAPTER 1.INTRODUCTION 1 1-1 BACKGROUND AND MOTIVATION 1 1-2 PAPER ORGANIZATION 2 CHAPTER 2.RELATED WORK 3 2-1 1D MEDIAN FILTER 3 2-2 3*3 2D MEDIAN FILTER 4 2-3 5*5 2D MEDIAN FILTER 4 2-4 SUMMARY OF THIS CHAPTER 6 CHAPTER 3. PROPOSED ALGORITHM 7 3-1. OVERVIEW OF THIS CHAPTER 7 3-2.TWO DIMENSIONAL MEDIAN ALGORITHM WHEN WIDTH IS 3 7 3-3.TWO DIMENSIONAL MEDIAN ALGORITHM WHEN WIDTH IS 5 8 3-4.TWO DIMENSIONAL MEDIAN ALGORITHM WHEN WIDTH IS 7 9 3-5.TWO DIMENSIONAL MEDIAN ALGORITHM WHEN WIDTH IS N 9 3-6. CONFIRMATION OF THE CONJECTURE 13 3-7. DEFINITION AND LEMMA 13 3-8. MATHEMATICAL PROOF 14 CHAPTER 4. PROPOSED ARCHITECTURE 15 4-1. PARALLELIZATION, PIPELINE AND SORTER DESIGN 15 4-2. SLIDING WINDOW MOVEMENT AND MUTI-THROUGHPUT PLANNING 17 4-3 CSFS (COLUMN SORTER FUNCTION SHARING) 18 4-4 CFSMT (COMPARATOR FUNCTION SHARING WITH MUTI-THROUGHPUT) 18 4-5 RCFS (ROW COMPARATOR FUNCTION SHARING) 19 4-6 METHOD FOR THE SAVING USE OF DISTRIBUTOR 20 4-7 PIPELINE REGISTER SAVING METHOD 21 4-8 ARCHITECTURE WITH AREA SAVING METHOD 21 CHAPTER 5. EXPERIMENTS AND COMPARISONS 23 5-1 OVERVIEW OF THIS CHAPTER 23 5-2 THE 3-WIDTH SLIDING WINDOW 23 5-3 THE 5-WIDTH SLIDING WINDOW 25 5-4 THE 7-WIDTH SLIDING WINDOW 26 CHAPTER 6. CONCLUSION AND FUTURE WORK 28 REFERENCE 29

    [1] Sun, Xiao Xin, and Wei Qu. “Comparison between Mean Filter and Median Filter Algorithm in Image Denoising Field.” Applied Mechanics and Materials, vol. 644–650, Trans Tech Publications, Ltd., Sept. 2014, pp. 4112–4116. Crossref, doi:10.4028/www.scientific.net/amm.644-650.4112.
    [2] Hameed, Asmaa & Mohammed, Haneen. (2017). Effect of Different Window Size on Median Filter Performance with Variable Noise Densities. International Journal of Computer Applications. 178. 22-27. 10.5120/ijca2017915732.
    [3] S.-H. Lin, P.-Y. Chen, and C.-H. Lin, ‘‘Hardware design of an energy-efficient high-throughput median filter,’’IEEE Trans. Circuits Syst. II, Exp.Briefs, vol. 65, no. 11, pp. 1728–1732, Nov. 2018
    [4] S.-H. Lin, P.-Y. Chen, and C.-K. Hsu, ‘‘Modular design of high-efficiency hardware median filter architecture,’’ IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 65, no. 6, pp. 1929–1940, Jun. 2018
    [5] R.-D. Chen, P.-Y. Chen, and C.-H. Yeh, ‘‘Design of an area-efficient one-dimensional median filter,’’IEEE Trans. Circuits Syst. II, Exp. Briefs,vol. 60, no. 10, pp. 662–666, Oct. 2013.
    [6] . Nikahd, P. Behnam, and R. Sameni, ‘‘High-speed hardware implementa-tion of fixed and runtime variable window length 1-D median filters,’’IEEETrans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 5, pp. 478–482, May 2016.
    [7] J. O. Cadenas, G. M. Megson and R. S. Sherratt, "Median Filter Architecture by Accumulative Parallel Counters," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 7, pp. 661-665, July 2015, doi: 10.1109/TCSII.2015.2415655.

    [8] D. Prokin and M. Prokin, "Low Hardware Complexity Pipelined Rank Filter," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 6, pp. 446-450, June 2010, doi: 10.1109/TCSII.2010.2048371.
    [9] V. V. R. Teja, K. C. Ray, I. Chakrabarti and A. S. Dhar, "High Throughput VLSI Architecture for One Dimensional Median Filter," 2008 International Conference on Signal Processing, Communications and Networking, Chennai, 2008, pp. 339-344, doi: 10.1109/ICSCN.2008.4447215.
    [10] J. L. Smith, ‘‘Implementing median lters in XC4000E FPGAS,’’ Xilinx Xcell, vol. 23, p. 16, Jul. 1996.
    [11] J. Subramaniam, J. K. Raju, and D. Ebenezer, ‘‘Fast median-finding word comparator array,’’ Electron. Lett., Dec. 2017.
    [12] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and J. A. Gómez-Pulido, ‘‘An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems,’’inProc.10thMedit. Conf. Control Automat., 2002
    [13] J. Subramaniam, R. J. Kannan, and D. Ebenezer, ‘‘Parallel and pipelined 2D Median filter architecture, ’’IEEE Embedded Syst. Lett Sep. 2018.
    [14] W. Chen, P. Chen, Y. Hsiao and S. Lin, "A Low-Cost Design of 2D Median Filter," in IEEE Access, vol. 7, pp. 150623-150629, 2019.
    [15] V. Kumar, A. Asati and A. Gupta, "Low-latency median filter core for hardware implementation of 5 × 5 median filtering," in IET Image Processing, vol. 11, no. 10, pp. 927-934, 10 2017, doi: 10.1049/iet-ipr.2016.0737.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE