| 研究生: |
林秉璋 Lin, Ping-Chang |
|---|---|
| 論文名稱: |
利用疊層氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究 The study of Low Temperature Nano-crystal SiGe Thin Film Prepared by PECVD with Layer-By-Layer Technology |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 低溫 、奈米矽鍺 、氫原子回火 、疊層 |
| 外文關鍵詞: | layer-by-layer, nc-SiGe, low temperature, HCA |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著平面顯示器產業的快速發展,薄膜電晶體的設計及改良頓成為重要課題。目前廣為應用的非晶矽薄膜電晶體雖然可以大面積且低溫均勻成長,但驅動電流較低是其最大的缺點。近來積極研究的複晶矽薄膜電晶體雖擁有大驅動電流,但其需高溫製程不利於玻璃基版上成長,而低溫複晶矽於大面積製作時其均勻度也是個考驗;雖然目前也有發展低溫成長複晶矽電晶體的技術,如金屬誘發橫向成長結晶或利用準分子雷射回火,但卻因此使製程多了一道回火的步驟。於是吾人利用PECVD疊層氫原子化學回火技術(簡稱疊層氫化技術)所成長的奈米矽鍺薄膜不但可以大幅提升其載子遷移率進而提升驅動電流,而且具有目前非晶矽薄膜技術的優點可以低溫(250℃)下大面積成長。
本論文研究利用疊層氫化技術成長奈米矽及奈米矽鍺薄膜。其中11層氫化技術成長的奈米矽薄膜霍爾遷移率為13.7 cm2/V.s及56%的結晶度,而15層氫化技術成長的奈米矽鍺薄膜不但霍爾遷移率可以達到125 cm2/V.s且結晶度更高達96.63%。此兩者的特性皆比非晶矽薄膜佳,尤其是奈米矽鍺薄膜更好。此外吾人更利用Fe-SEM,Raman spectrum,Photoluminescence spectrum,AFM來檢測奈米矽與奈米矽鍺薄膜的材料物理及光學特性。
Thin film transistors (TFTs) have been employed to drive and address each pixel in the flat panel displays. Amorphous TFTs have advantages of low temperature and simple deposition, but also possess the drawback of poor current driving ability. For the time being, poly-silicon TFTs are widely studied for their high mobility, but high fabricate temperature and non-uniformity are still the problems for production, on the other hand, the low temperature poly-silicon (LTPS) TFTs such as metal induced lateral crystallization (MILC), excimer laser annealing (ELA) even can be prepared at low temperature, however, these LTPS need extra annealing thus the process becomes more complicate.
In this thesis, we present a novel method of layer-by-layer hydrogen chemical annealing (HCA) to deposit the nc-Si and nco-SiGe thin films. This method is not only effective but also compatible to the amorphous TFTs technology. The 11 layers HCA nc-Si film reaches the mobility of 13.7cm2/V.s and crystalline volume fraction of 56%, while the 15 layers HCA nc-SiGe film has the mobility of 125 cm2/V.s and crystalline volume fraction of 96.63%. Both of the nano films have higher mobility over amorphous silicon thin films especially the nc-SiGe, and are uniformly deposited at low temperature (250℃). Additionally, we examine the physical and optical characteristics of the nano films by Fe-SEM, PL spectrum, Raman spectrum and AFM.
[1]工研院 IEK-IT IS 計畫 (2004/10), 工研院產業經濟與資訊服務中心.
[2]K.M. Chang, Y.H. Chung, C.G. Deng. “Characterization of the Novel Polysilicon TFT with a Subgate Coupling Structure.” IEEE Transaction ofElectron Devices, Vol 49, No4, April, 2002.
[3]液晶顯示器技術手冊, 經濟部技術處發行,台灣電子材料與元件協會出版
[4]T.Aoyama, G.Kawachi, N,Konishi, Y.Okajima and K.Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol136, no.4, pp.1169-1173, 1989.
[5]Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “ Fabraction of Laser-Annealed Poly-TFT by Forming a SixGe1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March 2001.
[6]Seok-Woon Lee, Yoo-Chan Jeon and Seung-Ki Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66(13), 27 ,pp1671-1673, March 1995.
[7]Jae Young, Ki Hyung Kim and Chae Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, J. Appl. Phys., 82(11), pp. 5865-5867, December 1997.
[8]范盛宏、方炎坤, “金誘發非晶矽橫向結晶層之研製及特性分析”,國立成功大學電機工程學系碩士論文,民88年 6 月.
[9]Debajyoti Das, Madhusudan Jana, Energy Research Unit, India, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme”, Solar Energy Material & Solar Cells 81 (2004) 169-181.
[10]P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen”, Thin Solid Films 337 (1999) 23-26
[11]O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. (1998) 866-870
[12]Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 (1999) 1-6。
[13]G. Ambrosone, U. Coscia, S. Lettieri, “Optical, structure and electrical properities of uc-Si:H films deposited by SiH4 +H2 ”, Material Science and Engineering B101 (2003) 236-241.
[14]P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics”, Current Opinion in Solid State and Material Science 6 (2002) 439-444.
[15]P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 (2000) 31-37.
[16]Kalache B, Kosarev AI, Vanderhaghen R, Roca i Cabarrocas , ”Ion bombardment effects on the microcrystalline silicon growth mechanisms and structure”, Journal of Non-Crystalline Solids 2002; 299-302 :63-7.
[17]C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June 1995.
[18]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 (2000) 201-205.
[19]王文德, 方炎坤, “利用金做低溫金屬誘發橫向結晶(MILC)成長應用於光電元件的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民92年 6 月
[20]侯水欽, 方炎坤, “添加氮及碘分子雙摻雜系統的有機發光元件之研究”,國立成功大學電機工程學系碩士論文,民93年 6 月.
[21]材料分析, 中國材料科學學會, 汪建民主編。
[22]K.C. Park, D.Y. Ma, K.H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films 305 (1997) 201-209.
[23]E. Ziegler, A. Heinrich, H. Opperman, G. Stover, Phys. Status Solidi A66 (1981) 635.
[24]P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos, A.Travlos, “Photo- and electroluminescence from nanocrystalline silicon single and multiplayer strcutures”, Material Science and Engineering B69-70 (2000) 345-349.
[25]H. Shirai, Y. Fukida, T. Nakamura, K. Azuma, “Effect of GeF4 addition on the growth of hydrogenated microcrystalline silicon film by plasma-enhanced chemical vapor deposion”, Thin Solid Films 350 (1999) 38-43.
[26]P. Roca i Cabarrocas, “New approaches for the production of nano-, micro-, and polycrystalline silicon thin films”, Phys. Stat. Sol. (c) 1, No.5, 1115-1130 (2004) / DOI 10.1002/pssc.200304328.