簡易檢索 / 詳目顯示

研究生: 葉俊彥
Yan, Chun-Yen
論文名稱: 雙原子鈉分子B1Πu→ X1Σ+g電子態雷射誘導螢光光譜
Laser-Induced Fluorescence of Na2 B1Πu→ X1Σ+g states
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: 鈉分子雷射誘導螢光光譜
外文關鍵詞: sodium molecular, Na2, Laser-Induced Fluorescence,, LIF, B1Πu
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用熱管爐加熱鈉金屬至320C°,產生足夠的鈉原子蒸氣經由碰撞產生鈉分子。利用單一波長氬離子雷射將鈉分子從基態(X1Σ+g)激發至激發態(B1Πu)。藉由收集螢光送進單光儀得到雷射誘導螢光光譜,且利用汞光譜去校正單光儀的掃瞄範圍,接著再利用文獻所給的分子常數分析由B1Πu產生的雷射誘導螢光(Laser-Induced Fluorescence ,LIF),分析出氬離子雷射將鈉分子激發至B1Πu的哪個振轉動(rovibrational)能階上。更進一步利用分析螢光訊號的強度,利用法蘭克康登因子、哈諾倫敦方程式、螢光頻率等影響螢光強度的因素,去模擬螢光訊號。螢光訊號模擬所得出的結果與實驗所得的雷射誘導螢光光譜十分相似。因此我們可以使用螢光訊號模擬回推確認所分析出來的B1Πu態是實際產生的激發態。對於分析出來的B1Πu能態能用於更進一步的實驗如雙光子共振光譜法(Optical-Optical Double Resonance)或者三光子共振法(All Optical Triple Resonance)的中間態(intermediate)來分析鈉分子的其他電子態。

    A single line Ar+ laser was used to excite the sodium dimer from the ground state (X1Σ+g) to the excited state (B1 Π u). Laser induced fluorescence (LIF) from B1 Π u state was collected and directed into a monochromator to record the spectrum. The rovibrational levels of Na2 ground state (X1Σ+g) on the recorded spectrum can be assigned using the molecular constants adapted from the literature.
    Furthermore, the intensity of the fluorescence was analyzed. A simulated fluorescence signals is well agreed with experimental fluorescence signals that help us to understand the mechanism of the molecular transition properties.
    For the simulation, the rovibrational assignments on B1 Π u states were ensured
    and could be used as the intermediate state for further experiments such as optical-optical double resonance or all optical triple resonance to study the other Na2 electronic states.

    內容 中文摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 4 1-3 雷射誘導螢光光譜法簡介 4 第二章 理論 5 2-1 雙原子分子能態能量 5 2-2 雙原子分子電子態項符 9 2-3 罕德耦合(Hund’s coupling cases) 10 2-3-1 Hund’s case(a) 10 2-3-2 Hund’s case(b) 11 2-3-3 Hund’s case(c) 11 2-3-4 Hund’s case(d) 12 2-4 耦合分離 (Uncoupling phenomenon) 13 2-4-1 簡併態( )的耦合分離 13 2-5 分子能態躍遷選擇定則(selection rules) 14 2-5-1 振動能階的選擇定則: 14 2-5-2 Ʌ-type doubling造成轉動能階的選擇定則: 14 2-5-3 兩能態間電子總軌道角動量L對核間軸投影 的選擇定則: 17 2-5-4 兩能態間電子總自旋角動量S的選擇定則: 17 2-5-5 分子電子總自旋角動量S對核間軸投影量 的選擇定則: 17 2-5-6 分子總角動量對核間軸的投影 的選擇定則: 17 2-5-7 鏡面對稱(+/-)的選擇定則: 18 2-5-8 反置對稱(g/u)的選擇定則: 18 2-6 分子躍遷強度 18 2-6-1 法蘭克-康登定理(Franck-Condon principle) 20 2-6-2 哈諾-倫敦方程式(Hönl-London formula) 21 2-7 RKR method 22 第三章 實驗 25 3-1實驗裝置與架設 25 3-2螢光光譜範圍 25 3-3氬離子雷射( Laser) 27 3-4 熱管爐(Heatpipe) 28 3-4-1 熱管爐構造 28 3-4-2 熱管爐工作原理 29 3-4-3 熱管爐製作流程 33 3-5 螢光訊號偵測系統 34 3-5-1單光儀 34 3-5-2光電倍增管 34 3-5-3光纖 34 3-6 校正系統 35 3-6-1 汞燈光譜 35 3-6-2 單光儀校正 37 3-7 實驗方法 38 3-7-1 雷射誘導螢光光譜法 38 3-8 實驗步驟 39 第四章 結果與討論 42 4-1 螢光光譜分析 42 4-2 螢光模擬 60 第五章 結論 69 參考文獻 70 附錄 73 附錄一:雷射誘導螢光光譜與訊號模擬 74 附錄二:單光儀 84 附錄三:實驗螢光值與分子常數計算值差 85 附錄四:熱管爐特性測試 106

    1.M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, and A. L. Schawlow, Phys. Rev. Lett. 37, 683 (1976).
    2.K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. c. Stwalley, and W. T. Zemke, J. Chem. Phys. 78, 3599 (1983).
    3.G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co, Malabar, Florida.
    4.P. Kusch and M. M. Hessel, J. Chem. Phys. 68, 2591 (1978).
    5.R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. D’incan, Chem. Phys. Lett. 104, 179 (1984).
    6.O. Babaky and K. Hussein, Can. J. Phys. 67, 912 (1989).
    7.W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100, 2661 (1994).
    8.K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knockel, E. Tiemman, H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev. A 54, 1006 (1996).
    9.G. W. King and J. H. van Vleck, Phys. Rev. 55, 1165 (1939).
    10.R. S. Mulliken, Phys. Rev. 120, 1674 (1960).
    11.J. Keller and J. Weiner, Phys. Rev. A 29, 2943 (1984).
    12.H. J. Vedder, G. K. Chawla, and R. W. Field, Chem. Phys. Lett. 111, 303 (1984).
    13.W. Demtröder, M. McClintock, and R. N. Zare, J. Chem. Phys. 51, 5495 (1969).
    14.J. M. L. Poyato, J. J. Camacho, A. M. Polo. and A. Pardo, Spectrochim. Acta 51, 1879 (1995).
    15.J. M. L. Poyato, J. J. Camacho, A. M. Polo. and A. Pardo, Spectrochim. Acta 52, 409 (1996).
    16.J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, J. Quant. Spectrosc. Radiat. Transfer 56, 353 (1996).
    17.J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, J. Mol. Spectrosc. 191, 248 (1998).
    18.A. Prado, J. Mol. Spectrosc. 309, 55 (1999).
    19.J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Spectrochim, Acta A 56, 769 (2000).
    20.J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 65, 729 (2000).
    21.A. Prado, J. Mol. Spectrosc. 199, 225 (2000).
    22.J. J. Camacho, A. Prado, and I. P. Acin, J. Phys. B: At. Mol. Opt. Phys. 34, 2597 (2001).
    23.J. J. Camacho, A. M. Polo, A. Pardo, J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 74, 667 (2002).
    24.J. J. Camacho, A. Pardo, and J. M. L. Poyato, J. Phys. B: At. Mol. Opt. Phys. 38, 1935 (2005).
    25.G. Gerber and R. Möller, Phys. Rev. Lett. 55, 814 (1985).
    26.H. Richter, H. Knöckel, and E. Tiemann, Chem. Phys. 157, 217 (1991).
    27.E. Tiemann, Atoms, Molecules and Clusters 5, 77 (1987).
    28.M. M. Hessel, E. W. Smith, and R. E. Drullinger, Phys. Rev. Lett. 33, 1251 (1974).
    29.W. Demtröder, W. Stetzenbach, M. Stock, and J. Witt, J. Mol. Spectrosc. 61, 382 (1976).
    30.J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebver-Brion, A. J. Meter, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500 (1975).
    31.F. Castano, J. de Juan, E. Martinez, abbr. 60, 2 (1983).
    32.S. Mangnier, P. Millie, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).
    33.A. S. King, J. Astrophys. 28, 300 (1908).
    34.G. M. Grover, T. P. Cotter, and G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).
    35.C. R. Vidal and J. Cooper, J. Appl. Phys. 40, 3370 (1969).
    36.C. R. Vidal and F. B. Haller, Rev. Sci. Instr. 42, 1779 (1971).
    37.C. R. Vidal and M. M. Hessel, J. Appl. Phys. 43, 2776 (1972).
    38.C. R. Vidal and J. Appl. Phys. 44, 2225 (1973).
    39.J. T. Bahns, Ph.D. dissertation, The University of Iowa, Iowa (1983).
    40.C. J. Sansonetti, M. L. Salit, and J. Reader, abbr. 35, 1 (1996).
    41.B. Edlen, Metrologia 2, 71 (1996).
    42.Ch. Ottinger, R. Velasco, and R. N. Zare, J. Chem. Phys. 52, 4 (1970).
    43.吳惠雯,雙原子鈉分子 與 電子態之雙光子共振光譜,國立成功大學化學所碩士論文 (2003).
    44.C. E. Moore, Atomic Energy Levels, Vol. I , P. 89, NSRDS-NBS 35, Washington D. C. (1971)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE