| 研究生: |
葉俊彥 Yan, Chun-Yen |
|---|---|
| 論文名稱: |
雙原子鈉分子B1Πu→ X1Σ+g電子態雷射誘導螢光光譜 Laser-Induced Fluorescence of Na2 B1Πu→ X1Σ+g states |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 鈉分子 、雷射誘導螢光光譜 |
| 外文關鍵詞: | sodium molecular, Na2, Laser-Induced Fluorescence,, LIF, B1Πu |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用熱管爐加熱鈉金屬至320C°,產生足夠的鈉原子蒸氣經由碰撞產生鈉分子。利用單一波長氬離子雷射將鈉分子從基態(X1Σ+g)激發至激發態(B1Πu)。藉由收集螢光送進單光儀得到雷射誘導螢光光譜,且利用汞光譜去校正單光儀的掃瞄範圍,接著再利用文獻所給的分子常數分析由B1Πu產生的雷射誘導螢光(Laser-Induced Fluorescence ,LIF),分析出氬離子雷射將鈉分子激發至B1Πu的哪個振轉動(rovibrational)能階上。更進一步利用分析螢光訊號的強度,利用法蘭克康登因子、哈諾倫敦方程式、螢光頻率等影響螢光強度的因素,去模擬螢光訊號。螢光訊號模擬所得出的結果與實驗所得的雷射誘導螢光光譜十分相似。因此我們可以使用螢光訊號模擬回推確認所分析出來的B1Πu態是實際產生的激發態。對於分析出來的B1Πu能態能用於更進一步的實驗如雙光子共振光譜法(Optical-Optical Double Resonance)或者三光子共振法(All Optical Triple Resonance)的中間態(intermediate)來分析鈉分子的其他電子態。
A single line Ar+ laser was used to excite the sodium dimer from the ground state (X1Σ+g) to the excited state (B1 Π u). Laser induced fluorescence (LIF) from B1 Π u state was collected and directed into a monochromator to record the spectrum. The rovibrational levels of Na2 ground state (X1Σ+g) on the recorded spectrum can be assigned using the molecular constants adapted from the literature.
Furthermore, the intensity of the fluorescence was analyzed. A simulated fluorescence signals is well agreed with experimental fluorescence signals that help us to understand the mechanism of the molecular transition properties.
For the simulation, the rovibrational assignments on B1 Π u states were ensured
and could be used as the intermediate state for further experiments such as optical-optical double resonance or all optical triple resonance to study the other Na2 electronic states.
1.M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, and A. L. Schawlow, Phys. Rev. Lett. 37, 683 (1976).
2.K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. c. Stwalley, and W. T. Zemke, J. Chem. Phys. 78, 3599 (1983).
3.G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules, Robert E. Krieger Publishing Co, Malabar, Florida.
4.P. Kusch and M. M. Hessel, J. Chem. Phys. 68, 2591 (1978).
5.R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and J. D’incan, Chem. Phys. Lett. 104, 179 (1984).
6.O. Babaky and K. Hussein, Can. J. Phys. 67, 912 (1989).
7.W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100, 2661 (1994).
8.K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knockel, E. Tiemman, H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev. A 54, 1006 (1996).
9.G. W. King and J. H. van Vleck, Phys. Rev. 55, 1165 (1939).
10.R. S. Mulliken, Phys. Rev. 120, 1674 (1960).
11.J. Keller and J. Weiner, Phys. Rev. A 29, 2943 (1984).
12.H. J. Vedder, G. K. Chawla, and R. W. Field, Chem. Phys. Lett. 111, 303 (1984).
13.W. Demtröder, M. McClintock, and R. N. Zare, J. Chem. Phys. 51, 5495 (1969).
14.J. M. L. Poyato, J. J. Camacho, A. M. Polo. and A. Pardo, Spectrochim. Acta 51, 1879 (1995).
15.J. M. L. Poyato, J. J. Camacho, A. M. Polo. and A. Pardo, Spectrochim. Acta 52, 409 (1996).
16.J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, J. Quant. Spectrosc. Radiat. Transfer 56, 353 (1996).
17.J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato, J. Mol. Spectrosc. 191, 248 (1998).
18.A. Prado, J. Mol. Spectrosc. 309, 55 (1999).
19.J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Spectrochim, Acta A 56, 769 (2000).
20.J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 65, 729 (2000).
21.A. Prado, J. Mol. Spectrosc. 199, 225 (2000).
22.J. J. Camacho, A. Prado, and I. P. Acin, J. Phys. B: At. Mol. Opt. Phys. 34, 2597 (2001).
23.J. J. Camacho, A. M. Polo, A. Pardo, J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 74, 667 (2002).
24.J. J. Camacho, A. Pardo, and J. M. L. Poyato, J. Phys. B: At. Mol. Opt. Phys. 38, 1935 (2005).
25.G. Gerber and R. Möller, Phys. Rev. Lett. 55, 814 (1985).
26.H. Richter, H. Knöckel, and E. Tiemann, Chem. Phys. 157, 217 (1991).
27.E. Tiemann, Atoms, Molecules and Clusters 5, 77 (1987).
28.M. M. Hessel, E. W. Smith, and R. E. Drullinger, Phys. Rev. Lett. 33, 1251 (1974).
29.W. Demtröder, W. Stetzenbach, M. Stock, and J. Witt, J. Mol. Spectrosc. 61, 382 (1976).
30.J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebver-Brion, A. J. Meter, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500 (1975).
31.F. Castano, J. de Juan, E. Martinez, abbr. 60, 2 (1983).
32.S. Mangnier, P. Millie, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).
33.A. S. King, J. Astrophys. 28, 300 (1908).
34.G. M. Grover, T. P. Cotter, and G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).
35.C. R. Vidal and J. Cooper, J. Appl. Phys. 40, 3370 (1969).
36.C. R. Vidal and F. B. Haller, Rev. Sci. Instr. 42, 1779 (1971).
37.C. R. Vidal and M. M. Hessel, J. Appl. Phys. 43, 2776 (1972).
38.C. R. Vidal and J. Appl. Phys. 44, 2225 (1973).
39.J. T. Bahns, Ph.D. dissertation, The University of Iowa, Iowa (1983).
40.C. J. Sansonetti, M. L. Salit, and J. Reader, abbr. 35, 1 (1996).
41.B. Edlen, Metrologia 2, 71 (1996).
42.Ch. Ottinger, R. Velasco, and R. N. Zare, J. Chem. Phys. 52, 4 (1970).
43.吳惠雯,雙原子鈉分子 與 電子態之雙光子共振光譜,國立成功大學化學所碩士論文 (2003).
44.C. E. Moore, Atomic Energy Levels, Vol. I , P. 89, NSRDS-NBS 35, Washington D. C. (1971)