| 研究生: |
吳靖琪 Wu, Ching-Chi |
|---|---|
| 論文名稱: |
紊流奈米流體於扭曲橢圓管的強制對流之數值模擬 Numerical simulation of turbulent nanofluids forced convection in a twisted elliptical tube |
| 指導教授: |
陳朝光
Chen, Cha’o-Kuang |
| 共同指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 紊流 、奈米流體 、扭曲橢圓管 、場協同原理 、兩相模型 |
| 外文關鍵詞: | Turbulent, Nanofluids, Twisted elliptical tubes, Entransy dissipation, Field synergy principle |
| 相關次數: | 點閱:126 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以兩相模型模擬奈米流體於均勻等壁溫三維扭曲橢圓管紊流強制對流之數值計算。應用控制體積法數值求解紊流強制對流奈米流體之橢圓、耦合、穩態之三維統御偏微分方程式。統御方程式則使用標準"k-ω" 紊流模型求解。研究參數包含雷諾數("10000 ≤ Re ≤ 15000" )、奈米粒子體積濃度("1 ≤ ϕ ≤ 4%" ),與節距長度("96mm ≤ d ≤ 192mm" )。首先以參考文獻中純水於扭曲橢圓管之實驗數據作驗證,其結果相當吻合,最大誤差在4%以內,再進一步延伸應用至奈米流體。
文中比較不同節距的扭曲橢圓管在等溫壁面時的對流熱傳與流場特性。模擬結果顯示與橢圓直管相比,流體流經扭曲橢圓管時產生旋轉,造成熱傳性能的增強。分析二次流與溫度分布,結果顯示扭曲橢圓管中因扭曲而產生的二次流造成奈米流體的混合。雖然可以提高傳熱能力,但扭曲橢圓管引起的擾動也會增加壓降。在研究範圍內,扭曲橢圓管之平均紐賽數與壓降,會隨著雷諾數與奈米粒子體積濃度增加而增加,並隨著節距長度增加而減少。
此外,以場協同原理解釋二次流對於熱傳的影響,並計算橢圓扭曲管中的耗散率。結果顯示在扭曲橢圓管中,扭曲的壁面使速度與溫度梯度有更好的協同性,因此可提高熱傳。而雷諾數與奈米粒子體積濃度增
加與節距長度縮短時,耗散量會增加,熱阻減少,傳熱效率較佳。
但若考慮摩擦阻抗的影響,雷諾數降低時會有較高的熱性能因子。
Numerical simulations by two-phase models of Al2O3/Water nanofluid forced convection in a three-dimensional twisted elliptical tube with uniform wall temperature are investigated using the finite volume approach. Flow resistance and heat transfer characteristics of nanofluids in the twisted elliptical tube are studied with the parameters including Reynolds number, nanoparticle volume concentration, and the twist pitch. Effects of the above-mentioned parameters on the performance of the twisted elliptical tubes are analyzed and the overall thermal-hydraulic performance is evaluated. In addition, the influence of the secondary flow on heat transfer is explained with the field synergy principle, and the entransy dissipation rate in the twist elliptical tube is calculated. The results show that in the twisted elliptical tubes, rotational motions are produced in the flowing nanofluid, enhancing the heat transfer performance compared with an oval tube. The average Nusselt number and the pressure drop both increase with increasing Reynolds number and nanoparticle volume concentration, while both decrease with the increasing of the twist pitch. Increase of Reynolds number and volume concentration of nanoparticles, and decrease of the pitch length yield more entransy dissipation and reduce thermal resistant, and the heat transfer process is more efficient. When the effect of pressure drop is considered, the thermal performance factor would be enhanced as Reynolds number decreases.
[1] Yang, S., Zhang, Li, Xu, H., “Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes,” Applied Thermal Engineering, Vol. 31, pp. 2981-2991, 2011.
[2] Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED Vol.231/MD66, pp. 99-105, 1995.
[3] Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, Vol. 457, pp. 3-11, 1996.
[4] Lee, S., Choi, S.U.S., Li, S., Eastman, J.A, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, Vol. 121, pp. 280-289, 1999.
[5] Xie, H.Q., Wang, J.C., Xi, T.G., Liu, Y., Ai, F., Wu, Q.R., 2002. “Thermal conductivity enhancement of suspensions containing nanosized alumina particles.” J. Appl. Phys., Vol. 91, pp.4568-4572, 2002.
[6] Maxwell, J. C., Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
[7] Keblinski, P., Phillpot, S.R., Choi, S.U.S., “Eastman, J.A., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, Vol. 45, pp.855–863, 2002.
[8] Buongiorno, J., “Convective transport in nanofluids, ASME J. Heat Transfer, Vol. 128(3), pp.240–250,2006
[9] Das, S. K., Choi, S. U. S., Patel, H. E., “Heat transfer in Nanofluids - A review,” Heat Transfer Engineering, Vol. 27, pp.3–19,2006
[10] Wang, J., Wang, M., Li, Z., “A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer,” Int. J. Thermal Sciences, Vol. 46, pp.228–234,2007
[11] Yu, Wenhua, France, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Engineering, Vol. 29, pp.432–460,2008
[12] Özerinç, S., Kakaç, S, Yazıcıoğlu, A.G., “Enhanced thermal conductivity of nanofluids: a state-of-the-art review,” Microfluidics and Nanofluidics, Vol. 8, pp.145–170,2010
[13] Brinkman, H.C., “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys, Vol. 20, pp. 571-581, 1952.
[14] Einstein, A. Investigation on the theory of Brownian movement, Dover, New York, 1956.
[15] Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., “Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon,” International Journal of Heat and Fluid Flow Vol. 28, pp.1492–1506, 2007.
[16] Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N., “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, Vol. 26, pp.530–546, 2005.
[17] Santra, A.K., Sen, S., Chakraborty, N, “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, Vol. 48, pp. 391-400, 2009.
[18] Akbari, M., Galanis, N., Behzadmehr, A., “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, Vol. 50, pp.1343-1354, 2011.
[19] Hadad, K. , Rahimian, A. Nematollahi, M.R., “Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor,” Annals of Nuclear Energy, Vol. 60, pp. 287-294, 2013.
[20] Mostafa, K. M. , Ardehali, R. M., “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, Vol. 44, pp. 157-164, 2013.
[21] Asmantas, L.A., Nemira, M.A., Trilikauskas V.V., “Coefficients of heat transfer and hydraulic drag of a twisted oval tube.” Heat Transfer-Soviet Research, Vol. 17, pp. 103-109, 1985.
[22] Si, Q., Xia, Q., Liang, D.X., Li L.H., “Investigation of heat transfer and flow resistance on twisted tube heat exchanger,” Journal of Chemical Industry and Engineering, Vol. 46, pp. 601–608, 1995.
[23] Zhang, X.X., Wei, G.H., Sang Zh.F., “Experimental research of heat transfer and flow friction properties in twisted tube heat exchanger,” Chemical Engineering, Vol. 35, pp. 17–20, 2007.
[24] Gao, X.N., Zou, H.C., Wang, D.Y., Lu Y.S., “Heat transfer and flow resistance properties in twisted oblate tube with large twist ratio,” Journal of South China University of Technology, Vol. 36, pp. 17–21,2008.
[25] Yang L., Li Z. X., “Numerical analysis of laminar flow and heat transfer in twisted elliptic tubes,” Engineering Mechanics, Vol. 20, pp. 143–148, 2003
[26] Bejan A., “Study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer – Trans. ASME, Vol. 101 (4), pp. 718–725, 1979
[27] Shah, R.K., Skiepko T., “Entropy generation extrema and their relationship with heat exchanger effectiveness – number of transfer unit behavior for complex flow arrangements,” J. Heat Transfer – Trans. ASME, Vol. 126 (6) , pp. 994–1002, 2004
[28] Guo, Z.Y., Zhu, H.Y., Liang X.G., “Entransy – a physical quantity describing heat transfer ability, Int. J. Heat Mass Transfer, Vol. 50, pp. 2545–2556, 2007
[29] Chen Q., Wang M., Pan N., et al., “Optimization principles for convective heat transfer,” Energy, Vol. 34 (9), pp. 1199–1206, 2009.
[30] Chen, Q., Liang, X. G., Guo, Z. Y., “Entransy theory for the optimization of heat transfer - A review and update,” International Journal Of Heat And Mass Transfer Vol. 63, pp. 65–81, 2013.
[31] Ishii, M., Mishima, K., “Two-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
[32] Maiga SEB, Nguyen CT, Galanis N, Roy G, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstruct, Vol. 35, pp. 543–557, 2004
[33] Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
[34] Schiller, L., Naumann, A., “A drag coefficient correlation,” Z.Ver. Deutsch. Ing. Vol. 77, pp. 318-320, 1935.
[35] Miller, A., Gidaspow, D., “Dense,vertical gas- solid flow in a pipe,” AIChE J.,Vol. 38, pp. 1801-1815, 1992.
[36] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[37] Patankar S.V., Spalding D.B., “A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows,” International Journal Heat Mss Transfer, vol. 15, pp. 1787-11806, 1972.