簡易檢索 / 詳目顯示

研究生: 王又菁
Wang, Yo-ching
論文名稱: 介白素-20:啟動子對基因的調節分析及生物功能性探討
IL-20:Promoter analysis and biological function study
指導教授: 張明熙
Chang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 102
中文關鍵詞: 發炎T-淋巴球基因調控細胞激素
外文關鍵詞: T lymphocytes, inflammation, gene regulation, cytokine
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Interleukine-10 (IL-10)是一種親多功能的間白素(pleiotropic cytokine),在免疫調節上具有重要的功能。IL-20又稱Zcyto10,屬於IL-10 family的一員,IL-10 family包含 IL-10、IL-19、IL-20、IL-22、MDA-7 (IL-24)以及AK155 (IL-26)。IL-20位於染色體1q32上,具有5個exon及4個intron,其胺基酸序列與其它IL-10 family的成員有24%~ 40%的相似性。現今已知IL-20過量表現的基因轉殖老鼠其皮膚的角質細胞有異常增生和分化的現象,顯示出類似於人類的牛皮癬(Psoriasis)病徵。由於目前對IL-20 in vitro的功能瞭解並不多,因此,本實驗室即在探討IL-20 promoter對基因的調控及其in vitro生物功能。
    為瞭解IL-20的基因調控,我們經由5’ RACE定出轉錄起始點(transcription start site;TSS)所在,並由TSS往5’ 端挑選出八個不同長度:pA、pB、pC、pD、pE、pF、pG、pH(63bp~1950bp)的片段,分別構築在含有luciferase基因的質體上並進行transfection至HEK293及Madin-Darby canine kidney (MDCK) epithelial-like cells中表現。藉由luciferase的活性分析,發現pE(長度279 bp)可以驅使luciferase有最高的表現量。GM-CSF以及IL-10兩者皆可正向調控IL-20 promoter的活性,也能增加單核球(monocyte)中IL-20的轉錄本(transcripts)。此外,我們分析198位個體,發現有9%的健康個體以及9% SLE病人其IL-20 promoter 有318 bp insertion / deletion polymorphism。亦經由luciferase的活性分析,發現包含此318 bp-insertion的片段其promoter活性較不含這318 bp-insertion的片段活性低37%~72%,顯示出這318 bp-insertion可能具有調控基因的重要功能。
    在IL-20 基因的組織分佈(tissue distribution)方面,我們找出人類在腎臟、肺臟與胎盤中會表現IL-20,小鼠IL-20則在大腦及心臟中會表現。此外,也發現人類及小鼠的IL-20因alternative splicing而有wild type(5個exon及4個intron)及short form(4個exon及3個intron)的表現,人類IL-20 short form 較wild type缺少exon 4;小鼠IL-20 short form則缺少exon 2。我們以E. coli系統來表達與純化小鼠IL-20 wild type和short form蛋白質,並進一步分析此兩種蛋白質in vitro的生物功能。結果發現這兩種蛋白質皆會刺激單核球產生IL-6與TNF-α。此外,IL-20 wild type較short form能刺激CD8+ T細胞產生較多量的ROS (reactive oxygen species)。另外,經由Quantitative Real-Time PCR分析,發現小鼠IL-20 wild type及short form也會促進CD8+ T 細胞產生KGF-1(keratinocyte growth factor-1)、TNF-α及IL-6。由上述的結果發現,我們推測IL-20在發炎反應中有其重要性,並可能刺激CD8+ T細胞產生KGF-1而作用於角質細胞(keratinocyte),導致角質細胞不正常的增生、分化與產生牛皮癬的病徵。

    IL-10 is a pleiotropic cytokine with important functions in immunoregulation. IL-20 (also called zcyto10) belongs to the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, MDA-7 (IL-24), and AK155 (IL-26). IL-20 locates on chromosome 1q32. It consists of five exons and four introns. The polypeptide sequence of IL-20 shares homology with other IL-10 family members. It had been shown that IL-20 transgenic mice showed phenotype similar to human psoriasis, demonstrating abnormal keratinocytes proliferation and differentiation. Little is known about the in vitro biological function of IL-20. Therefore, we aimed to study the in vitro biological function and gene regulation of IL-20. To understand the gene regulation of human IL-20, we identified the human IL-20 transcription start site by 5’ RACE, isolated the promoter sequence, and analyzed its promoter activities. Eight fusion genes containing different regions upstream of exon 1 (63 bp-1950 bp) linked to a luciferase reporter gene were expressed in HEK293 and Madin-Darby canine kidney (MDCK) epithelial-like cells. Some fusion genes showed luciferase activity higher than that of the positive control, the SV40 promoter fusion gene. We identified a fusion gene (pE) containing 279 bp upstream of exon 1 that showed promoter activity 14-fold greater than that of the negative control. Both GM-CSF and IL-10 showed up-regulation of the promoter activity of IL-20 and induced IL-20 transcripts in monocytes. Analysis of IL-20 promoter from 198 individuals, both healthy individuals and patients with SLE, showed that there is a 318 bp insertion-deletion polymorphism on the IL-20 promoter. Insertion of this 380 bp in the promoter region decreased its promoter activity by 37% to 72%. It indicated that the 318 bp insertion could impact on gene regulation. In tissue distribution of IL-20, we found human IL-20 was expressed in kidney, lung, placenta, while mouse IL-20 was expressed in brain and heart. We also isolated two alternatively spliced transcripts from human and mouse cDNA libraries. Exon 4 was deleted in the human short form of IL-20, while exon 2 was deleted in the mouse short form of IL-20. In order to investigate the IL-20 biological function, we have purified mouse recombinant IL-20 wild type and short form protein expressed in E. coli system. We demonstrated that both IL-20 wild type and short form protein induced production of IL-6 and TNF-a in monocytes; up-regulated the transcripts of keratinocyte growth factor-1 (KGF-1), IL-6, and TNF-a in CD8-positive T cells; and induced the production of reactive oxygen species (ROS) from CD8-positive T cells. These results suggest that IL-20 play an important role in inflammatory reaction and the involvement of IL-20 in psoriasis may be mediated through targeting CD8-positive T cells.

    誌謝 1 目錄 2 中文摘要 4 英文摘要 6 圖目錄 8 表目錄 10 附錄目錄 11 縮寫檢索表 12 第一章 緒論 14 1-1 介白素-10 (Interleukin-10) 14 1-2 介白素-10家族 15 1-3 介白素-20 16 第二章 材料與方法 17 2-1 人類IL-20基因體之確認 17 2-2 人類及小鼠IL-20 spliced variants之組織分佈 17 2-3 人類IL-20轉錄起始點(TSS)之確定 17 2-4 IL-20 promoter-luciferase 重組基因之構築 18 2-5 Transfection 及 luciferase 活性測試 18 2-6 人類單核球之分離 19 2-7 人類單核球中IL-20轉錄本(transcripts)之分析 19 2-8 小鼠IL-20蛋白質之表達與純化 19 2-9 小鼠單核球、B細胞、T細胞之分離 20 2-10 IL-20刺激小鼠單核球、CD8+ T細胞產生IL-6及TNF-a之分析 20 2-11 IL-20刺激人類單核球產生IL-6及TNF-a之分析 20 2-12 小鼠CD8+ T細胞中KGF-1、TNF-a及IL-6轉錄本之分析 21 2-12-1 Nonquantitative PCR 21 2-12-2 Quantitative RT-PCR 21 2-13 CD8+ T 細胞中reactive oxygen species (ROS)活性之偵測 22 第三章 結果 23 3-1 人類及小鼠IL-20 alternatively-spliced variants之分離 23 3-2 人類IL-20之5’ 端未轉譯區域 23 3-3 人類及小鼠IL-20之基因體結構 24 3-4 人類及小鼠IL-20 wild type和short form之胺基酸序列比較 24 3-5 IL-20 promoter region之構築 25 3-6 IL-20 promoter活性之分析 25 3-7 IL-20調控區域分析 26 3-8 IL-20 promoter之Insertion-deletion polymorphism 27 3-9 IL-20重組蛋白之表達與純化 28 3-10 IL-20刺激單核球產生IL-6及TNF-a 29 3-11 IL-20引發CD8+ T 細胞產生reactive oxygen species (ROS) 30 3-12 IL-20正向調控CD8+ T細胞中之KGF-1轉錄本 31 3-13 IL-20正向調控CD8+ T細胞中之IL-6及TNF-α轉錄本 31 第四章 討論 33 參考文獻 37 圖 46 表 78 附錄 80 自述 101

    1. Moore, K.W., O’ Garra, A., de Waak Malefyt, R., Vieira, P., Mosmann, T.R. Interleukin-10. Annu Rev Immunol. 11: 165-190, 1993.
    2. de Waal Malefyt, R.D., Abrams, J., bennet, B., Figdor, G.C., de Vries, J.E. Interleukin-10 inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp Med 174: 1209-1220, 1991.
    3. Vieira, P., de Waal Malefyt, R., Dang, W., et al. Isolation oand expressiono fhuman cytokine synthesis inhibitory factor (CSIF) cDNA clones: homology to Epstein Barr virus open reading frame BCRFI. Proc. Natl Acad. Sci. USA 88: 1172-1176, 1991.
    4. Burdin, N., Peronne, C., Banchereau, J. and Rousser, F. Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J. Exp. Med. 177: 295-304, 1993.
    5. Benjamin, D., Knobloch, T.J. and Dayton, M.A. Human B-cell interlukine-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt’s lymphoma constitutively secrete large quantities of interlukine-10. Blood 80:1289-1298, 1992.
    6. Yssel, H., De Waal Malefyt, R., Roncarolo, M.G., et al. IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J. immunol. 149: 2378-2384, 1992.
    7. Wanidworanun, C. & Strober, W. Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis J. Immunol. 151, 6853-6861, 1993.
    8. Llorente, L., Richaud-Patin, Y., Fior, R., Alcocer-Varela, J., Wijdnes, J., Morel-Fourrier, B., Galanaud, P. & Emilie, P. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum. 37: 1647–1655, 1994.
    9. Cash, J. J., Splawski, J. B., Thomas, R., McFarlin, J. F., Schulze- Koops, H., Davis, L. S., Fujita, K. & Lipsky, P. E. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 38: 96–104, 1995.
    10. Perez, L., Orte, J. & Brieva, J. A. Terminal differentiation of spontaneous rheumatoid factor-secreting B cells from rheumatoid arthritis patients depends on endogenous interleukin-10. Arthritis Rheum. 38: 1771–1776, 1995.
    11. Itoh, K. & Hirohata, S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J. Immunol. 154: 4341–4350, 1995.
    12. Llorente, L., Zou, W., Levy, Y., Richaud-Patin, Y., Wijdenes, Y., Alcocer-Varela, J., Morel-Fourrier, B., Brouet, J.C., Alarcon- Segovia, D., Galanaud, P., et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus J. Exp. Med. 181: 839–844, 1995.
    13. Jinquan, T., Larsen, C. G., Gessser, b., Matsushima, K. & Thestrup-Pedersen, K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J. Immunol. 151: 4545-4551, 1993.
    14. Matsuda, M., Salazar, F., Petersson, M., Masucci, G., Hansson, J., Pisa, Zhang, Q. C., Masucci, M. G. & Kiessling, R. Interleukin 10 pretreatment protects target cells from tumor- and allo- specific cytotoxic T cells and downregulates HLA class I expression. J. Exp. Med. 180: 2371–2376, 1994.
    15. Kim, J., Modlin, R. L., Moy, R. L., Dubinett, S. M., McHugh, T., Nickloff, B. J. & Uyemura, K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J. Immunol. 155: 2240–2247, 1995.
    16. Suzuki, T., Tahara, H., Narula, S., Moore, K. W., Robbins, P. D. & Lotze, M. T. J. Exp. Med. 182: 447–486, 1995.
    17. Fortis, C., Foppoli, M., Gianotti, L., Galli, L., Citterio, G., Consogno, G., Gentilini, O. & Braga, M. Increased interleukin-10 serum levels in patients with solid tumours. Cancer Lett. 104: 1-5, 1996.
    18. Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S. V., and Renauld, J. C. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J.Immunol. 167: 3545-3549, 2001.
    19. Gallagher G., Dickensheets H., Eskdale J., Izotova L. S., Mirochnitchenko, O. V., Peat, J. D., Vazquez, N., Pestka, S., Donnelly, R. Kotenko SV. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1: 442-50,2000.
    20. Wolk K, Kunz S, Asadullah K et al. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol. 168: 5397-5402, 2002.
    21. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol. 169: 4288-4297, 2002.
    22. Parrish-Novak, J., XU, W., Brender, T. et al. IL-19, IL-20, and IL-24 signal through two distinct receptor complexes: Differences in receptor-ligand interactions mediate unique biological functions. J. Biol. Chem. In press, 2002.
    23. Dumoutier, L., Van Roost, E., Colau, D. et al. Human IL-TIF: molecular cloning and functional characterization as an hepatocyte stimulating factor. Proc. Natl. Acad. Sci. USA 97: 10144-10149, 2000.
    24. Xie, M. H., Aggarwal, S., Ho, W.H., Foster, J., Zhang, Z., Stinson, J., Wood, W.J., Goddard, A.D., and A. L. Gurney. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor related proteins CRF2-4 and IL-22R. J. Biol. Chem. 275: 31335-31339, 2000.
    25. Kotenko, S. V., Izotova, L. S., Mirochnitchenko, O. V., Esterova, E., Dickensheets, H., Donnelly, R. P., and Pestka, S.. Identificationof the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rb) is a common chain of both the IL-10 and IL-22 (IL-TIF) receptor complexes. J. Biol. Chem. 276: 2725-2732, 2001.
    26. Aggarwal, S., Xie, M. H., Maruoka, M. et al. Acinar cells of the pancreas are a target of interlukine-22. J. Interferon Cytokine Res. 21: 1047-1053, 2001.
    27. Jiang, H., Lin J. J., Su Z. Z., Goldstein N. I., and Fisher P. B. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477-2486, 1995.
    28. Zhang, R., Tan, Z., Liang, P.identification of a novel ligand-receptor pair constitutively activated by ras oncogenes. J. Biol. Chem. 275: 24436-24443, 2000.
    29. Soo, C., Shaw, WW., Freymiller, E. et al. Cutaneous rat wounds express c49a, a novel with homology to the human melanoma differentiation associated gene, mda-7. J. Cell. Biochem. 74: 1-10, 1999.
    30. Schaefer, G., Venkataraman, C., Schindler, U., Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells. J. Immunol. 166: 5859-5863, 2001.
    31. Garn, H., Schmidt, A., Grau, V. et al. IL-24 is expressed by rat and human macrophages. Immunobiology 205: 321-334, 2002.
    32. Jiang, H., Su, Z.Z., Lin J.J. et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc. Natl. Acad. Sci. USA 93: 9160-9165, 1996.
    33. Sarkar, D., Su, Z.Z., Lebedeva, I.V. et al. mda-7 (IL-24) mediated selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc. Natl. Acad. Sci. USA 99: 10054-10059, 2002.
    34. Su, ZZ., Madireddi, MT., Lin JJ. et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer and inhibits tumor growth in nude mice. Proc. Natl. Acad. Sci. USA 95: 14400-14405, 1998.
    35. Mhashilkar, AM., Schrock, RD., Hindi, M. et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer therapy. Mol. Med. 7: 271-282, 2001.
    36. Saeki, T., Mhashilkar, A., Swanson X et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 21: 4558-4566, 2002.
    37. Knappe, A., s. Hor, S. Wittmann, and H. Fickenscher. Induction of a novel cellular homolog of interleukin-10, Ak155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol. 74: 3881-3887, 2000.
    38. Blumberg, H., Conklin, D., Xu, W. F., Grossmann, A., Brender, T., Carollo, S., Eagan, M., Foster, D., Haldeman, B. A., Hammond, A., Haugen, H., Jelinek, L., Kelly, J. D., Madden, K., Maurer, M. F., Parrish-Novak, J., Prunkard, D., Sexson, S., Sprecher, C., Waggie, K., West, J., Whitmore, T. E., Yao, L., Kuechle, M. K., Dale, B. A., and Chandrasekher, Y. A. Interleukin 20 discovery, receptor identification, and role in epidermal function. Cell 104: 9-19, 2001.
    39. Kunz, M., Henseleit-Walter, U., Sorg, C., Kolde, G. Macrophage marker 27E10 on human keratinocytes helps o differentiate discoid lupus erythematosus and Jessner’s lymphocytic infiltration of the skin. Eur J Dermatol. 9: 107-110, 1999.
    40. Rojanasakul Y, Wang L, Hoffman AH, Shi X, Dalal NS, Banks DE, and Ma JK. Mechanisms of hydroxyl free radicalinduced cellular injury and calcium overloading in alveolar macrophages. Am J Respir Cell Mol Biol 8: 377–383, 1993.
    41. Bonizzi G, Piette J, Merville MP, and Bours V. Cell typespecific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochem Pharmacol 59: 7–11, 2000.
    42. Bowie A and O’Neill LA. Oxidative stress and nuclear factorkappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59: 13–23, 2000.
    43. Baeuerle PA and Henkel T. Function and activation of Nfkappa B in the immune system. Annu Rev Immunol 12: 141-179, 1994.
    44. Jan D. Bos and Menno A. De Rie. The pathogenesis of psoriasis: immunological facts and speculations. Immunology Today. 20: 40-46, 1999.
    45. P Strange, KD Cooper, ER Hansen, G Fisher, JK Larsen, D Fox, C Krag, JJ Voorhees, and O Baadsgaard. T-lymphocyte clones initiated from lesional psoriatic skin release growth factors that induce keratinocyte proliferation. J. Invest. Dermatol., 101: 695-700, 1993.
    46. Grossman, R.M., Krueger, J., Yourish, D., Granelli-Piperno, A., Murphy, D.P., May, L.T., Kupper, T.S., Sehgal, P.B., Gottlieb, A.B. Interleukin 6 is expressed in high levels in psoratic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. 86:6367-6371, 1989.
    47. Turksen, K., Kupper, T.S., Degenstein, L., Williams, I., Fuchs, E. Interleukin 6: insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. 89:5068-5072, 1992.
    48. Sawamura, D., Meng, X., Ina, T., Sato, M., Tamai, K., Hanada, K., Hashimoto. Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte gene therapy for inflammatory skin diseases using IL-6 mutant genes. J. Immunol. 161:5633-5639, 1998.
    49. Sato, M., Sawamura, D., Ina, S., Yaguchi, T., Hanada, K., Hashimoto, I. In vivo introduction of the interleukin 6 gene into human keratinocytes: induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch. Dermatol. Res. 27:400-404, 1999.
    50. Sugawara, T., Gallucci, R.M., Simeonova, P.P., Luster, M.I. Regulation and role of interleukin 6 in wounded human epithelial keratinocytes. Cytokine 15:328-336, 2001.
    51. Daliani, D., Ulmer, R.A., Jackow, C., Pugh, W., Gansbacher, B., Cabanillas, F., Divic, M., Sarris, A.H. Tumor necrosis factor-alpha and interferon-gamma, but not HTLV-1, are likely factors in the epidermotropism of cutaneous T-cell lymphoma via induction of interferon-inducible protein-10. Leuk. Lymphoma 29:315-328, 1998.
    52. Hancock GE, Kaplan G, Cohn ZA: Keratinocyte growth regulation by the products of immune cells. J Exp Med 168:1395-1402, 1998.
    53. Gesser, B., H. Leffers, T. Jinquan, C. Vestergaard, N. Kirstein, S. Sindet-Pedersen, S. L. Jensen, K. Thestrup-Pedersen, and C. G. Larsen. Identification of functional domains on human interleukin 10. Proc. Natl. Acad. Sci. USA 94:14620-14625, 1997.
    54. Ding, Y., L. Qin, S. V. Kotenko, S. Pestka, and J. S. Bromberg. A single amino acid determines the immunostimulatory activity of interleukin 10. J. Exp. Med. 191:213-224, 2000.
    55. Yo-Ching Wang, Guan-Ying Chen, San-Ming Yang, Chia-Ying Yen, Hsing-Hui Li, Tzu-Wen Ho, Yung-chih Cheng, Interleukin 22 Induces and Interleukine 26 inhibits Production of Interleukin 6 and Tumor Necrosis Factor-Alpha in monocytes (submitted).
    56. Brightbill, H. D., S. E. Plevy, R. L. Modlin, and S. T. Smale. A prominent role for Sp-1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages. J. Immunol. 164:1940-1951, 2000.
    57. Valdimarsson H, Baker BS, Jonsdottri I, Fry L. Psoriasis: a disease of abnormal keratinocyte proloferation induced by T lymphocytes. Immunol Today 7:256-259, 1986.
    58. White SH, Newcomper VD, Mickey MR, Terasaki PI. Disturbance of HLA antigene frequency in psoriasis. N Engl Med 287:740-743, 1972.
    59. De Rie MA, Cairo I, Van Lier RAW and Bos JD. Expression of the T-cell activation antigens CD27 and CD28 in normal and psoriatic skin. Clin. Exp. Dermatol. 21, 104-111, 1996.
    60. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB, Krueger JG. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med. 1:442-447, 1995.
    61. Chi-Chen Wei, Tzu-Wen Ho, Wei-Guang Liang, Guan-Ying Chen, and Ming-Shi Chang. Cloning and Characterization of Mouse IL-22 Binding Protein. Genes Immun. 4:204-211, 2003.
    62. Dokka, S., X. Shi, S. Leonard, L. Wang, V. Castranova, and Y. Rojanasakul. Interleukin-10-mediated inhibition of free radical generation in macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 280:L1196-L1202, 2001.

    下載圖示 校內:2004-08-19公開
    校外:2004-08-19公開
    QR CODE