簡易檢索 / 詳目顯示

研究生: 李昇頤
Lee, Sheng-yi
論文名稱: 離子束濺鍍鈦酸鍶鋇/氮化鋁鈦薄膜之研究
Investigation of ion beam sputter deposited BST/TiAlN thin film
指導教授: 黃肇瑞
Huang, Jow-lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 127
中文關鍵詞: 擴散阻障鈦酸鍶鋇薄膜電容氮化鋁鈦離子束濺鍍
外文關鍵詞: thin film capacitor, diffusion barrier, Ion beam sputter, TiAlN, BST
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高介電常數材料如鈦酸鍶鋇 ((Ba,Sr)TiO3, BST)作為薄膜電容元件運用之研究已受到廣泛的注意。氮化鋁鈦薄膜則是擴散阻障層相當好的選擇。離子束濺鍍法的優點有製程溫度低,可以減少對基板之熱影響,其離子源沒有電漿體與靶材或鍍膜反應所造成之污染問題。另外其鍍膜速率低,相對於其它鍍膜技術可以得到緻密且表面平整之鍍膜,可望藉此改善元件電性表現。本研究以離子束濺鍍法製備鈦酸鍶鋇/氮化鋁鈦薄膜,進行薄膜製程研究及評估氮化鋁鈦兼作為鈦酸鍶鋇薄膜電容之底電極和擴散阻障層的可行性。氮化鋁鈦薄膜使用鈦鋁合金靶通氮氣之反應式濺鍍,實驗探討基板溫度、離子束電壓、氮氣分壓對於氮化鋁鈦薄膜之導電性、抗氧化與擴散阻障特性之影響。鈦酸鍶鋇薄膜由(Ba0.5Sr0.5)TiO3陶瓷靶濺鍍,鍍膜過程改變基板溫度、氧氣分壓以及熱處理溫度與氣氛,最後以薄膜性質分析結果及薄膜電容之漏電特性作為評估依據。

    原子堆積密度較高的結晶面以及良好的結晶性有助於氮化鋁鈦薄膜傳導電荷,薄膜之粗糙度與鋁含量則會影響抗氧化能力。實驗結果顯示隨著基板溫度、離子束電壓與氮氣分壓的變化直接或間接影嚮了吸附粒子之移動力,進而改變鍍膜之結晶性與從優取向,因此影響鍍膜之導電性。抗氧化能力方面,較低的基板溫度下,濺鍍之氮化鋁鈦薄膜粗糙度較低,且薄膜中之鋁含量較高,並因此有較佳的抗氧化能力。濺鍍粒子之動能隨離子束電壓增加而增加,過高的能量造成再濺射效應發生率提高。再濺射使得粗糙度增加,並且高能量的濺鍍粒子撞擊下可能伴隨鍍膜表面損傷,將提供氧化反應位置,粗糙度增加本身也會使得薄膜容易發生氧化現象。鈦鋁合金靶在不同的氮分壓下氮化比例不同,隨著氮分壓變化鍍膜中的鋁含量會因著靶材上不同粒子的濺鍍率而改變,在高的氮氣分壓下濺鍍得到之薄膜有較低的鋁含量,抗氧化能力因此而劣化。

    氮化鋁鈦對於鈦酸鍶鋇之組成元素的阻擴散能力相當優良,氧化是由界面侵入之氧引起之側向氧化現象。氮化鈦鋁氧化生成之氮氣造成鈦酸鍶鋇/氮化鋁鈦結構的損壞,這可能是因為在多層膜的結構下,生成之氮氣累積在鈦酸鍶鋇與氮化鋁鈦之界面,從而造成鍍層剝離與水泡狀之微結構。熱處理後電容結構之破孔產生之應力來源可能有熱膨脹係數差異、側向氧化引起之體積變化以及氮氣釋出現象,鈦鋁金屬黏著層有助於強化多層膜之界面減少熱處理後電容結構之破孔產生,因此使得漏電流得到大幅度降低。氧氣氛中濺鍍之鈦酸鍶鋇呈等軸狀之奈米晶粒結構,且在鈦酸鍶鋇/氮化鋁鈦界面處得到鋁氧化物或鈦氧化物之中介層,等軸狀之奈米晶粒結構以及該中介層亦進一步減少漏電流。

    Barium strontium titanate [(Ba,Sr)TiO3] (BST) has been shown to be a suitable dielectric layer in thin film capacitors, whilst TiAlN is a strong candidate for the barrier layer material. Thin films may be deposited using ion beam sputter deposition (IBSD). The advantages of this method include a relatively low processing temperature and hence fewer thermal effects on the substrate, avoidance of contamination and interaction between plasma and target or substrate, and, since the deposition rate of IBSD is low, a smooth morphology and dense structure of the deposited film, beneficial to the electrical properties of thin film capacitors. This work focus on the study of BST/TiAlN thin film process using IBSD and evaluation of the potential of TiAlN functioned as a diffusion barrier and a bottom electrode in a BST capacitor. We deposited TiAlN by a TiAl target with nitrogen as reactive gas. The effects of substrate temperature, ion beam voltage and nitrogen partial pressure on the resistivity, oxidation resistance and diffusion barrier properties of TiAlN films were studied. The BST film was deposited by a (Ba0.5Sr0.5)TiO3 target and the effects of substrate temperature, oxygen partial pressure, annealing temperature and annealing atmosphere were studied. The evaluation is based on the thin film properties and leakage of capacitor.

    The performance of films was affected by the crystalline plane, density and crystallinity, which affect electrical resistivity, the roughness and Al content, which affect oxidation resistance, and these are related to the mobility of adatoms on the substrate, which is itself affected by substrate temperature, ion beam voltage and nitrogen partial pressure. TiAlN films deposited at lower temperatures were smoother and had a higher Al content, making them more stable under an oxygen atmosphere. The kinetic energy of sputtered particles increased with increasing ion beam voltage and the resputtering of film occurred when the kinetic energy of sputtered particles was too high. Resputtering caused higher film roughness and the surface damage caused by bombarding of energetic particles created sites that easily reacted with oxygen. The degree of nitridation of the TiAl target differed with the nitrogen partial pressure and hence so did the sputtered yield of different species on the target: the Al content of the films was lower at higher nitrogen partial pressure and because of this the oxidation resistance of the film was low.

    TiAlN proved to be a good diffusion barrier against the components of BST films. The "lateral oxidation" of TiAlN was caused by the diffusion of oxygen from the interface. This damage to the stacking structure was caused by N2 gas generated in the oxidation reaction of the TiAlN film accumulating at the interface between BST and TiAlN, resulting in the formation and peeling off of blisters at the interface. Holes in the stacking structure of BST/TiAlN after annealing were caused by differences in coefficient of thermal expansion, volume increase from the oxidation reaction and nitrogen out-gassing. However, the adhesion layer TiAl effectively reduced the generation of holes by improving the interface strength, noticeably reducing current leakage. The BST film structure, deposited in an oxygen atmosphere, was nanocrystalline equiaxial in type. In addition, an insulating oxide interlayer, having high breakdown field strength, was formed at the BST/TiAlN interface. These structures further resulted in a lower level of current leakage.

    總目錄 中文摘要 I 英文摘要 III 致謝 V 總目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 8 第二章 理論基礎 9 2.1 離子源工作原理 9 2.2 反應濺鍍 12 2.3 鍍層的成核與成長 15 2.4 鍍層的結構區域模型 17 2.5 鈦酸鍶鋇介電層之缺陷 20 2.6薄膜電容漏電之因素 21 2.6.1鍍膜形態之影響 21 2.6.2界面能階之影響 23 第三章 實驗的方法與步驟 29 3.1 實驗流程 29 3.2 材料選擇 30 3.3 基材前處理 30 3.4 濺鍍設備 30 3.5 濺鍍步驟與條件 33 3.6 熱處理條件 33 3.7 鍍層分析及測量 33 3.7.1 微結構觀察 33 3.7.2 晶體結構分析 35 3.7.3 成份分析 35 3.7.4 電性測量 36 第四章 氮化鋁鈦薄膜 39 4.1 基板溫度之影響 39 4.1.1 濺鍍速率 39 4.1.2 表面粗糙度 39 4.1.3 結晶結構 45 4.1.4 抗氧化能力 49 4.1.5 結晶結構與氮化鋁鈦鍍膜電阻率 51 4.2 離子束電壓之影響 55 4.2.1 表面粗糙度 56 4.2.2 結晶結構 59 4.2.3 抗氧化能力 59 4.2.4 結晶結構與氮化鋁鈦鍍膜電阻率 61 4.3 氮氣分壓之影響 65 4.3.1 薄膜電阻率 65 4.3.2 結晶結構 65 4.3.3 化學組成 68 4.3.4 抗氧化能力 72 4.4 第四章總結 76 第五章 鈦酸鍶鋇與鈦酸鍶鋇/氮化鋁鈦薄膜 78 5.1 鈦酸鍶鋇薄膜 78 5.1.1 基板溫度之影響 78 5.1.1.1 結晶結構 78 5.1.1.2 微結構 80 5.1.2 熱處理氣氛之影響 84 5.1.2.1 結晶結構 84 5.2 鈦酸鍶鋇/氮化鋁鈦薄膜 86 5.2.1 微結構 86 5.2.2 氮化鋁鈦之阻擴散能力 88 5.2.3 熱穩定性 91 5.2.4 漏電特性 93 5.3 鈦酸鍶鋇/氮化鋁鈦/鈦鋁薄膜 95 5.3.1 表面粗糙度 95 5.3.2 漏電特性 97 5.3.3 結晶結構 97 5.3.4 微結構觀察 100 5.3.5 破壞機制 103 5.3.6 氧氣氛濺鍍之影響 104 5.3.6.1 結晶結構及微結構 104 5.3.6.2 漏電特性 109 5.4 第五章總結 111 第六章 結論 112 參考文獻 115 研究成果 125 作者簡歷 127

    1. L. L. Hencb,J. K. West, Principles of Electric Ceramics, 1990.
    2. N. Ichinose, T. Ogiwara, "Preparation and properties of (Ba,Sr)TiO3 thin films by RF magnetron sputtering", Jpn. J. Appl. Phys., 32, 4115-4117 (1993).
    3. T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato, M. Nunoshita, "Dielectric properties of (Ba,Sr)TiO3 thin films deposited by RF sputtering", Jpn. J. Appl. Phys., 32, 4126-4130 (1993).
    4. S.-G. Yoon, A. Safari, "(Ba0.5Sr0.5)TiO3 thin film by r.f. magnetron sputtering and its electric properties", Thin Solid Films, 254, 211-215 (1995).
    5. C. S. Hwang, "(Ba,Sr)TiO3 thin films for ultra large scale dynamic random access memory. A review on the process integration", Mater. Sci. Eng., B56, 178–190 (1998).
    6. J. Song, H. R. Kim, J. Park, S. Jeong, C. S. Hwang, "Oxidation behavior of TiAlN barrier layers with and without thin metal overlayer for memory capacitor applications", J. Mater. Res., 17, 1789-1794 (2002).
    7. C.-H Lai, Y. C. Wu, S. Ma, "Effects of high working pressure on dielectric properties of sputtered (Ba,Sr)TiO3 films on Ir electrodes", J. Vac. Sci. Technol. A, 21, 1464-1468 (2003).
    8. C. S. Hwang, "Bulk- or interface-limited electrical conductions in IrO2/(Ba,Sr)TiO3/ IrO2 thin film capacitors", J. Mater. Res., 16, 3476-3484 (2001).
    9. T. Kawahara, M. Yamamuka, A. Yuuki, K. Ono, "(Ba,Sr)TiO3 Films prepared by liquid source chemical vapor deposition on Ru electrodes", Jpn. J. Appl. Phys., 35, 4880-4885 (1996).
    10. Y. Matsui, M. Suga, M. Hiratani, H. Miki, Y. Fujisaki, "Oxygen diffusion in Pt bottom electrodes of ferroelectric capacitors", Jpn. J. Appl. Phys., 36, L1239-L1241 (1997).
    11. B. S. Lee, Y. C. Choi; C.-H Lai, Y. C. Wu, S. Ma, "Preparation of Pt/Ru bilayers and their application to the capacitor of memory devices", Jpn. J. Appl. Phys., 39, 222-226 (2000).
    12. P. Bhattacharya, T. Komeda, K.-H. Park, Y. Nishioka, "Comparative study of amorphous and crystalline (Ba,Sr)TiO3 thin films deposited by laser ablation", Jpn. J. Appl. Phys., 32, 4103-4106 (1993).
    13. M.-S. Tasi, S.-C. Sun, T.-Y. Tseng, "Effect of bottom electrode materials and annealing treatments on the electrical characteristics of Ba0.47Sr0.53TiO3 film capacitors", J. Am. Ceram. Soc., 82, 351-358 (1999).
    14. H. J. Chung, J. H. Choi, J. Y. Lee, S. I. Woo, "Preparation and electrical properties of (Ba,Sr)TiO3", Thin Solid Films, 382, 106-112 (2001).
    15. J. Im, O. Auciello, S. K. Streiffer, "Layered (BaxSr1-x)Ti1+yO3+z thin films for high frequency tunable devices", Thin Solid Films, 413, 243-247 (2002).
    16. Y. Zhu, M. Shen, R. Xu, W. Cao, "Improving leakage currents of Pt/Ba0.8Sr0.2TiO3/Pt capacitors using multilayered structures", Surf. Coat. Technol., 160, 277-281 (2002).
    17. H. G. Tompkins, "The initial stages of the oxidation of titanium nitride", J. Appl. Phys., 71, 980-983 (1992).
    18. S.-H. Park, S.-G. Yoon, "High temperature oxidation of TiAlN thin films for memory devices", Integr. Ferroelectr., 48, 281-290 (2002).
    19. A. M. Dhote, O. Auciello, D. M. Gruen, R. Ramesh, "Studies of thin film growth and oxidation processes for conductive Ti-Al diffusion barrier layers via in situ surface sensitive analytical techniques", App. Phys. Lett., 79, 800-802 (2001).
    20. A. Tempez, A. Bensaoula, A. Schultz, "Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ photoelectron spectroscopy", J. Vac. Sci. Technol. A, 20, 1320-1326 (2002).
    21. J. Koo, J.-W. Lee, T. Doh, Y. Kim, Y.-D. Kim, H. Jeon, "Study on the characteristics of TiAlN thin film deposited by atomic layer deposition method", J. Vac. Sci. Technol. A, 19, 2831-2834 (2001).
    22. P. M. Smith, J. S. Custer, "Chemical vapor deposition of titanium-silicon-nitride films", Appl. Phys. Lett., 70, 3116-3118 (1997).
    23. Ch. Wenger, M. Albert, B. Adolphi, H. Heuer, J. W. Bartha, F. Schlenkrich, "Integration of high dielectric (Ba0.5Sr0.5)TiO3 films into amorphous TaSiN barrier layer structure", Mater. Sci. Semiconductor Proc., 5, 233-236 (2003).
    24. D. McIntyre, J. E. Green, G. Håkansson, J.-E. Sundgren, W.-D. Münz, "Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms", J. Appl. Phys., 67, 1542-1553 (1990).
    25. J.-L. Huang, B.-Y. Shew, "Effects of aluminum concentration on the oxidation behaviors of reactively sputtered TiAlN films", J. Am. Ceram. Soc., 82, 696-704 (1999).
    26. C. W. Kim, K. H. Kim, "Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al", Thin Solid Films, 307, 113-119 (1997).
    27. S.-D. Kim, I.-S. Hwang, J.-K. Rhee, T.-H. Cha, H.-D. Kim, "Oxidation resistance of sputtered Ti1-xAlxN films for complementary metal oxide semiconductor storage node electrode barriers", Electrochem. Solid-State Lett., 4, G7-G10 (2001).
    28. Y. Matsui, M. Hiratani, Y. Nakamura, I. Asano, F. Yano, "Formation and oxidation properties of (Ti1-xAlx)N thin films prepared by dc reactive sputtering", J. Vac. Sci. Technol. A, 20, 605-611 (2002).
    29. B. Panda, C. S. Samantaray, A. Dhar, S. K. Ray, D. Bhattacharya, "Electrical properties of r.f. magnetron sputtered Ba1-xSrxTiO3 films on muti-layered bottom electrodes for high-density memory application", J. Mater. Sci., 13, 263-268 (2002).
    30. F. Yan, H. L. W. Chan, C.-L. Choy, W. Wu, Y. Wang, "Leakage current of (Ba0.5 Sr0.5 )TiO3 thin film prepared by pulsed-laser deposition", Thin Solid Films, 406, 200-203 (2002).
    31. G. Yang, H. Gu, J. Zhu, Y. Wang, "The fabrication and characteristics of (Ba0.5Sr0.5)TiO3 thin films prepared by pulsed laser deposition", J. Crys. Growth, 242 172-176 (2002).
    32. X. Zhu, D. Zheng, W. Peng, J. Zhu, X. Yuan, J. Lia, M. Zhang, Y. Chen, H. Tian, X. Xu, "Preparation, microstructure and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on Pt/Ti/SiO2/Si substrates by pulsed laser deposition", Mater. Lett., 58, 3591-3596 (2004).
    33. Y. Ding, C. Jin, Z. Meng, "The effects and mechanism of chemical additives on the pyrolysis evolution and microstructure of sol-gel derived Ba1-xSrxTiO3 thin films", Thin Solid Films, 375, 196-199 (2000).
    34. Z. Wei, H. Xu, M. Noda, M. Okuyama, "Preparation of Ba1-xSrxTiO3 thin fims with seeding layer by a sol–gel method", J. Crys. Growth, 237-239, 443-447 (2002).
    35. R.-B. Zhang, C.-S. Yang, G.-P. Ding, J. Feng, "Preparation and characterization of Ba1-xSrxTiO3 thin films deposited on Pt/SiO2/Si by sol–gel method", Mater. Res. Bull., 40, 1490-1496 (2005).
    36. F. Fitsilis, S. Regnery, P. Ehrhart, R. Waser, F. Schienle, M. Schumacher, M. Dauelsberg, P. Strzyzewski, H. Juergensen, "BST thin films grown in a multiwafer MOCVD reactor", J. Eur. Ceram. Soc., 21, 1547-1551 (2001).
    37. D. C. Yoo, J. Y. Lee, "Superlattice formation of (Ba,Sr)TiO3 prepared by metal-organic chemical vapor deposition", Mater. Lett., 47, 258-261 (2001).
    38. J. Park, C. S. Hwang, D. Y. Yang,"Optimization of the annealing process for the (Ba,Sr)TiO3 thin films grown by low-temperature (420℃) metalorganic chemical vapor deposition", J. Mater. Res., 16, 1363-1371 (2001).
    39. S. Yamamichi, H. Yabuta, T. Sakuma, Y. Miyasaka, "(Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5)TiO3 thin films prepared by ion beam sputtering", Appl. Phys. Lett., 64, 1644-1646 (1994).
    40. C.-J. Peng, S. B. Krupanidhi, "Structures and electrical properties of barium strontium titanate thin films growth by multi-ion-beam reactive sputtering technique", J. Mater. Res., 10, 708-726 (1995).
    41. A. H. Mueller, N. A. Suvorova, E. A. Irene, O. Auciello, J. A. Schultz, "Model for interface formation and the resulting electrical properties for barium-strontium-titanate films on silicon", J. Appl. Phys., 93, 3866-3872 (2003).
    42. J. Westlinder, G. Sjöblom, J. Olsson, "Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrode", Microelectron. Eng., 75, 389-396 (2004).
    43. T.-H. Cha, D.-G. Park, T.-K. Kim, S.-A. Jang, I.-S. Yeo, J.-S. Roh, J. W. Park, "Work function and thermal stability of Ti1-xAlxNy for dual metal gate electrodes", Appl. Phys. Lett., 81, 4192-4194 (2002).
    44. S. Aggarwal, A. M. Dhote, H. Li, S. Ankem, R. Ramesh, "Conducting barrier for vertical integration of ferroelectric capacitors on Si", Appl. Phys. Lett., 74, 230-232 (1999).
    45. S. Aggarwal, B. Nagaraj, I. G. Jenkins, H. Li, R. P. Sharma, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, A. R. Krauss, O. Auciello, "Correlatioin between oxidation resistance and crystallinity of Ti-Al as a barrier layer for high-density memories", Acta Mater., 48, 3387-3394 (2000).
    46. H. R. Kaufman, R. S. Robinson, "Operation of Broad-beam Sources", Commonwealth Scientific Co., Virginia, 1987.
    47. F. Shinoki, A. Itoh, "Mechanism of rf reactive sputtering", J. Appl. Phys., 46, 3381-3384 (1975).
    48. G. Lemperière, J. M. Poitevin, "Influence of the nitrogen partial pressure on the properties of d.c.-sputtered titanium and titanium nitride films ", Thin Solid Films, 111, 339-349 (1984).
    49. M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, "Effects of oxygen pressure in reactive ion beam sputter deposition of zirconium oxides", J. Vac. Sci. Technol. A, 6, 2326-2332 (1988).
    50. S. M. Rossnagel et al., "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, U.S.A.,1989.
    51. B. Chapman, “Glow discharge process”, John Wiley and Sons, New York, 1980.
    52. J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", J. Vac. Sci. Technol., 11, 666-670 (1974).
    53. P. B. Barna, M. Adamik, "Fundamental structure forming phenomena of polycrystalline films and the structure zone models", Thin Solid Films, 317, 27-33 (1998).
    54. M. S. Tsai, T. Y. Tseng, "Effect of bottom electrodes on dielectric relaxation and defect analysis of (Ba0.47Sr0.53)TiO3 thin film capacitors", Mater. Chem. Phys. 57, 47-56 (1998).
    55. R. Waser, T. Baiatu, K. H. Härdtl, "dc electrical degradation of perovskite-type titanates: I, ceramics", J. Am. Ceram. Soc., 73, 1645-1653 (1990).
    56. G. Vincent, D. Bois, P. Pinard, "Conductance and capacitance studies in GaP Schottky barriers", J. Appl. Phys., 46, 5173-5178 (1975).
    57. W.-J. Lee, C. Basceri, S. K. Streiffer, A. I. Kingon, D.-Y. Yang, Y. Park, H.-G. Kim, "Ir and Ru bottom electrodes for (Ba,Sr)TiO3 thin films deposited by liquid delivery source chemical vapor deposition", Thin Solid Films, 323, 285-290 (1998).
    58. C. Wang, L. Fang, G. Zhang, D.-M. Zhung, M.-S. Wu, "I-V characteristics of tantalum oxide film and the effect of defects on its electrical properties", Thin Solid Films, 458, 246-250 (2004).
    59. Y. T. Kim, C. W. Lee, "Advantage of RuOx bottom electrode in the dielectric and leakage characteristics of (Ba,Sr)TiO3 capacitor", Jpn. J. Appl. Phys., 35, 6153-6156 (1996).
    60. S. Hong, H. Bak, I. An, O. K. Kim, "Microstructure and electrical properties of (BaxSr1-x)TiO3 thin films on various electrodes", Jpn. J. Appl. Phys., 39, 1796-1800 (2000).
    61. S.-H. Paek, J. Won, K.-S. Lee, J.-S. Choi, C.-S. Park, "Electrical and microstructural degradation with decreasing thickness of (Ba,Sr)TiO3 thin films deposited by RF magnetron sputtering", Jpn. J. Appl. Phys., 35, 5757-5762 (1996).
    62. P. Bhattacharya, K.-H. Park, Y. Nishioka, "Control of grain structure of laser-deposited (Ba,Sr)TiO3 films to reduce leakage current", Jpn. J. Appl. Phys., 33, 5231-5234 (1994).
    63. D.-S Kil, B.-I. Lee, S.-K. Joo, "Effect of deposition conditions of buffer layer on the characteristics of (Ba,Sr)TiO3 thin films fabricated by a self-buffering process", Thin Solid Films, 343-344, 453-456 (1999).
    64. C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H.-J. Cho, H. Horii, W. D. Kim, S. I. Lee, Y. B. Roh, M. Y. Lee, "A comparative study on the electrical conduction mechanisms of (Ba0.5Sr0.5)TiO3 thin films on Pt and IrO2 electrodes", J. Appl. Phys., 83, 3703-3713 (1998).
    65. L. Goux, M. Gervais, F. Gervais, A. Catherinot, C. Champeaux, F. Sabary, "Characterization of pulsed laser deposited Ba0.6Sr0.4TiO3 on Pt-coated silicon substrates", Mater. Sci. Semiconductor Proc., 5, 189-194 (2003).
    66. K. Choi, P. Lysaght, H. Alshareef, C. Huffman, H.-C. Wen, R. Harris, H. Luan, P.-Y. Hung, C. Sparks, M. Cruz, K. Mathews, P. Majhi, B. H. Lee, "Growth mechanism of TiN film on dielectric films and the effects on the work function", Thin Solid Films, 486, 141-144 (2005).
    67. H. N. Alshareef, K. Choi, H. C. Wen, H. Luan, H. Harris, Y. Senzaki, P. Majhi, B. H. Lee, R. Jammy, S. Aguirre-Tostado, B. E. Gnade, R. M. Wallace, "Composition dependence of the work function of Ta1-xAlxNy metal gate", Appl. Phys. Lett., 88, 072108 (2006).
    68. H. N. Alshareef, H. F. Luan, K. Choi, H. R. Harris, H. C. Wen, M. A. Quevedo-Lopez, P. Majhi, B. H. Lee, "Metal gate work function engineering using AlNx interfacial layers", Appl. Phys. Lett., 88, 112114 (2006).
    69. J.-H. Joo, J.-M. Seon, Y.-C. Jeon, K.-Y. Oh, J.-S. Roh, J.-J. Kim, "Improvement of leakage currents of Pt/(Ba,Sr)TiO3/Pt capacitors", Appl. Phys. Lett., 70, 3053-3055 (1997).
    70. S. Maruno, T. Kuroiwa, N. Mikami, K. Sato, S. Ohmura, M. Kaida, T. Yasue, T. Koshikawa, "Model of leakage characteristics of (Ba,Sr)TiO3 thin films", Appl. Phys. Lett., 73, 954-956 (1998).
    71. D. M. Smyth, M. P. Harmer, P. Peng, "Defect chemistry of relaxor ferroelectrics and the implications for dielectric degradation", J. Am. Ceram. Soc., 72, 2276-2278 (1989).
    72. R. Waser, "Electrochemical boundary conditions for resistance degradation of doped alkaline-earth titanates", J. Am. Ceram. Soc., 72, 2234-2240 (1989).
    73. Y. Fukuda, H. Haneda, I. Sakaguchi, K. Numata, K. Aoki, A. Nishimura, "Dielectric properties of (Ba,Sr)TiO3 thin films and their correlation with oxygen vacancy density", Jpn. J. Appl. Phys., 36 (Part 2, No. 11B), L1514-L1516 (1997).
    74. R.-V. Wang, P. C. Mclntyre, "Point defect distributions and their electrical effects on (Ba,Sr)TiO3/Pt thin films", J. Appl. Phys., 94, 1926-1933 (2003).
    75. Y. Fukuda, K. Numata, K. Aoki, A. Nishimura, G. Fujihashi, S. Okamura, S. Ando, T. Tsukamoto, "Effects of postannealing in oxygen ambient on leakage properties of (Ba,Sr)TiO3 thin-film capacitors", Jpn. J. Appl. Phys., 37 (Part 2, No. 4B), L453-L455 (1998).
    76. T. Endo, K. Yoshii, S. Iwasaki, H. Kohmoto, H. Saratani, S. Shiomi, M. Matsui, Y. Kurosaki, "Oxygen partial pressure dependences of a-c phase ratio, crystallinity, surface roughness and in-plane orientation in YBCO thin film depositions by IBS", Supercond. Sci. Technol., 16, 110-119 (2003).
    77. K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, C. M. Lee, "Effects of nitrogen flow rates on the growth morphology of TiAlN films prepared by an rf-reactive sputtering technique", Thin Solid Films, 406, 159-163 (2002).
    78. R. Wuhrer, W. Y. Yeung, "A study on the microstructure and property development of d.c. magnetron cosputtered ternary titanium aluminium nitride coatings Part III effect of substrate bias voltage and temperature", J. Mater. Sci., 37, 1993-2004 (2002).
    79. M. C. Hugon, F. Varniere, F. Letendu, B. Agius, I. Vickridge, A. I. Kingon, "18O study of the oxidation of reactive sputtered Ti1-xAlxN barrier", J. Mater. Res., 16, 2591-2599 (2001).
    80. P. Panjan, B. Navinšek, M. Čekada, A. Zalar, "Oxidation behavior of TiAlN coaings sputtered at low temperature", Vacuum, 53, 127-131 (1999).
    81. D.-G. Park, T.-H. Cha, S.-H. Lee, I.-S. Yeo, J.-W. Park, S.-D. Kim, "Characteristics of sputtered Ti1-xAlxN films for storage node electrode", J. Vac. Sci. Technol. B, 19, 2289-2294 (2001).
    82. U. C. Oh, J. H. Je, "Effects of strain energy on the preferred orientation of TiN thin films", J. Appl. Phys., 74, 1692-1696 (1993).
    83. J. Pelleg, L. Z. Zevin, S. Lungo, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films, 197, 117-128 (1991).
    84. J. Y. Rauch, C. Rousselot, N. Martin, "Structure and composition of TixAl1-xN thin films sputter deposited using a composite metallic target", Surf. Coat. Technol., 157, 138-143 (2002).
    85. L. Combadiere, J. Machet, "Reactive magnetron sputtering deposition of TiN films. I. Influence of the substrate temperature on structure, composition and morphology of the films", Surf. Coat. Technol., 88, 17-27 (1996).
    86. T. J. Zhang, S. Z. Li, B. S. Zhang, W.H. Huang, R. K. Pan, "Effect of deposition parameters on crystallization of RF magnetron sputtered BST thin films", Key Eng. Mater., 336-338, 79-82 (2007).
    87. D.-Y. Kim, S.-G. Lee, Y.- K. Park, S. J Park, "Effect of ambient gas pressure on the preferred orientation of barium titanate thin films prepared by laser deposition", Jpn. J. Appl. Phys., 34, L1564-L1566 (1995).
    88. N.-Y. Lee, T. Sekine, Y. Ito, K. Uchino, "Deposition profile of RF-magnetron- sputtered BaTiO3 thin films", Jpn. J. Appl. Phys., 33, 1484-1488 (1994).
    89. J. G. Lisoni, J. A. Johnson, L. Goux, V. Paraschiv, D. Maes, H. Van der Meeren, M. Willegems, L. Haspeslagh, D. J. Wouters, C. Caputa, R. Zambrano, Ch. Turquat, Ch. Muller, "Enhanced oxidation of TiAlN barriers integrated in three-dimensional ferroelectric capacitor structures", J. Appl. Phys., 101, 014908-1-014908-7 (2007)
    90. Y. Matsui, M. Hiratani, S. Kimura, "Thermal stability of a RuO2 electrode prepared by DC reactive sputtering", Jpn. J. Appl. Phys., 39, 256-263 (2000).
    91. L. L. López, J. Portelles, J. M. Siqueiros, G. A. Hirata, J. McKittrick, "Ba0.5Sr0.5TiO3 thin films deposited by PLD on SiO2/Si,RuO2/Si and Pt/Si electrodes", Thin Solid Films, 373, 49-52 (2000).
    92. C. V. Falub, A. Karimi, M. Ante, W. Kalss, "Inerdependence between stress and texture in arc evaporated Ti-Al-N thin films", Surf. Coat. Technol., 201, 5891-5898 (2007).
    93. L. Goux, M. Gervais, A. Catherinot, C. Champeaux, F. Sabary, "Crystalline and electrical properties of pulsed laser deposited BST on platinized silicon substrate", J. Non-Crystall. Solids, 303, 194-100 (2002).

    下載圖示 校內:立即公開
    校外:2009-05-19公開
    QR CODE