簡易檢索 / 詳目顯示

研究生: 蔡雨璇
Cai, Yu-Syuan
論文名稱: 結合乾旱指標之多水庫系統環境流量管理策略
Strategies of Environmental Flow Management Combined with Drought Indicators for a Multi-Reservoir System
指導教授: 孫建平
Suen, Jian-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 76
中文關鍵詞: 環境流量標準化降雨指數修正缺水指數水文改變指標聯合水庫系統
外文關鍵詞: Natural Flow Regime, Environmental Flow, Standardized Precipitation Index (SPI), Multiple Reservoir System, Modified Shortage Index (MSI), Indicator of Hydrologic Alteration (IHA)
相關次數: 點閱:221下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大壩建設造成河川大量流量被阻截,改變生態系統中大範圍的非生物和生物棲息條件,被認為是全球河流最嚴重的人為影響之一。本研究的目的是結合乾旱指標應用於環境流量管理策略中,期望能同時滿足人類和環境用水需求。在乾旱指標中,選用計算簡單,且能根據需求選擇時間尺度的標準化降水指數(SPI)來進行計算,在根據標準化降水指數對應的放水條件下,開發了五種環境用水的釋放情境:(一)沒有環境用水釋放,(二)Q_95加上不同比例的旬平均流量,(三)前人研究之推薦流量(四)Tennant方法建議的環境流量,以及(五)改變農業灌溉的基準供水量。在所有情境下計算並比較缺水指數和水文改變指標。本研究使用了易取得的雨量資料,同時考量水庫現有蓄水量的環境用水計算方法,提供台灣水庫管理者在環境流量管理和規劃,有用且嶄新的參考策略。
    本研究以曾文、烏山頭聯合操作水庫系統作為研究區域,整理歷史雨量與水庫操作資料,開發一套水庫操作模擬程式,在原有的操作規則上,另外提出東口堰引流公式、和曾文水庫防洪溢流公式,以及環境用水的打折比例,使每年的模擬過程能更有一致性。最後使用修正缺水指數比較各情境的缺水情況,結果指出:(1)五個情境大致分成三種等級,情境四缺水指數最高,因為此情境釋放的環境用水最高,進而影響水庫蓄水量和供水打折比例。(2)情境二、情境三缺水指數差異不多,皆略低於情境四,根據初始蓄水量設定,有時情境二較高,有時情境三較高。(3)情境一和情境五為供應最多人為用水的方案,因為情境一未額外提供環境用水,情境五供應較少的農業供水,故此兩情境缺水指數最低。
    此外,藉由水文改變指標分析,探討哪一種釋放環境用水的情境對回復河川到自然流態的幫助最大,結果指出:於三種不同初始蓄水量設定時,皆有類似的趨勢,以平均初始蓄水量設定為例,在20個年中選定的9個IHA指標中,情境五在共180個IHA中,以31.0%高於其他情境,接著是情境二(26.2%)、情境一(18.3%)、情境三(13.1%),最後則是情境四(11.4%)。最後,根據水庫模擬結果、修正缺水指數與水文改變指標分析後,建議以情境二作為曾文水庫釋放環境用水之參考方案。

    Construction of dams at the upstream of rivers, to store water resource, might modify the abiotic and biotic elements in the ecosystem, and it is considered one of the most significant human impacts on rivers worldwide. In this study, the selected drought indicator was the Standardized Precipitation Index (SPI). And it was applied to release environmental water to balance human needs and environmental requirements. Five scenarios were developed based on the baseline of water supply and environmental water release. The scenarios were: (1) no release of water for environmental flow, (2) Q_95 plus ten days of average flow in different proportions, (3) flow rate recommended from previous studies, (4) environmental flows recommended by Tennant method, and (5) changes under the baseline allocation of water for agricultural irrigation. The study was divided into two parts. The first part used the Modified Shortage Index (MSI) to compare the water shortage in each scenario. The results indicated that: (1) The five scenarios were roughly divided into three levels, and the MSI of scenario four was the highest, because the environment water released by this scenarios was the highest, which in turn affect the reservoir water storage capacity and water supply discount ratio. (2) There was not much difference between scenario 2 and scenario 3 water shortage index, which are slightly lower than scenarios 4. According to the initial water storage amount, sometimes scenarios 2 was higher, and sometimes scenario 3 was higher. (3) Scenario 1 and Scenario 5 were the schemes for correcting the lowest water deficit index. Because the scenarios did not provide additional environmental water, and scenario 5 supplied less water for agricultural, these two scenarios had the lowest water shortage index. The second part was to discuss the scenarios through hydrological alteration indicators. In the nine IHA indicators selected in the 20 years, the number of each scenario was the closest to the natural hydrological alteration indicator. The average of initial water storage was set as an example. In total of 180 IHAs, scenarios 5 was higher than other scenarios with 31.0%, followed by scenarios 2 (26.2%), scenarios 1 (18.3%), scenarios 3 (13.1%), and finally scenarios 4 (11.4%). Water deficient ratio and eco-hydrological indicator were calculated and compared in all cases. This study used an environmental flow calculation method, using readily available rainfall data. The actual water storage procedure of the reservoirs was considered at the same time. This study could provide sufficient information for reservoir managers in Taiwan to make more suitable and sufficient management in environmental flow and river planning.

    摘要 I Extended Abstract III 謝誌 IX 目錄 X 圖目錄 XII 表目錄 XIV 第一章 前言 1 1.1研究動機與目的 1 1.2論文架構 3 1.3研究流程 4 第二章 文獻回顧 6 2.1乾旱 6 2.2 環境流量 8 2.2.1經驗法 10 2.2.2水文法 10 2.2.3水理法 11 2.2.4棲地模擬法 11 2.2.5整體法 13 2.3 水文指標與河川生態之關聯 14 第三章 研究方法 18 3.1 研究區域 18 3.1.1曾文水庫 18 3.1.2烏山頭水庫 18 3.1.3氣候條件 25 3.2 標準化降水指數 29 3.3 情境設定 33 3.4 水庫操作模擬 34 3.4.1 雨量、流量資料 34 3.4.2 水庫水平衡方程式 35 3.4.3 東口堰引水 37 3.4.4 曾文水庫防洪操作 38 3.4.5 修正缺水指數 39 3.5 水文改變指標 40 3.6 主成份分析 40 第四章 結果與討論 42 4.1以滿足人類用水討論各情境 42 4.1.1 曾文水庫防洪操作 42 4.1.2 環境流量 43 4.1.3 缺水指數 47 4.1.4 不同初始蓄水量間的缺水指數 51 4.2以滿足環境用水討論各情境 55 4.3綜合滿足人類與環境用水用水討論各情境 66 第五章 結論與建議 67 5.1結論 67 5.2建議 69 參考文獻 69

    Acreman, M. & A. Ferguson (2010) Environmental flows and the European water framework directive. Freshwater Biology, 55, 32-48.
    Ates, H., Dogan, S., & Berktay, A. (2017). Comparative Study Of Flow Regimes For The Examination Of Environmental Flows. International Journal Of Ecosystems And Ecology Science-Ijees, 7(3), 499-510.
    Amrit, K., S. K. Mishra & R. P. Pandey (2018) Tennant Concept Coupled with Standardized Precipitation Index for Environmental Flow Prediction from Rainfall. Journal of Hydrologic Engineering, 23, 12.
    Azami, K., H. Suzuki & S. Toki (2004) Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Research and Applications, 20, 549-563.
    Bartschi, D. K. (1976). A habitat-discharge method of determining instream flows for aquatic habitat. In Proceedings of Symposium and Specility Conference on Instream Flow Needs Ⅱ, 285-294. Bethesda: American Fisheries Society. Maryland.
    BOE, Spain (1985). Water Act of 1985, Boletín Oficial del Estado
    Bobbi, C. J., Warfe, D. M., & Hardie, S. A. (2014). Implementing environmental flows in semi‐regulated and unregulated rivers using a flexible framework: case studies from tasmania, australia. River research and applications, 30(5), 578-592.
    Bovee, K. D. & R. Milhous. (1978). Hydraulic simulation in instream flow studies: theory and techniques. Instream Flow Information Paper 5. United States Fish and Wildlife Service FWS. OBS-78/33. 129pp.
    CIS, W. (2015). Ecological flows in the implementation of the water framework directive. technical report-2015-086.
    Cushing, C. (1983) Relationships among chemical, physical, and biological indices along river continua based on multivariate analysis. Archiv fur Hydrobiologie, 98, 317-326.
    Declaration, B. (2007). The Brisbane Declaration: environmental flows are essential for freshwater ecosystem health and human well-being. In 10th International River Symposium, Brisbane, Australia, 3-6.
    Dyson, M., Bergkamp, G., & Scanlon, J. (2003). Flow: the essentials of environmental flows. IUCN, Gland, Switzerland and Cambridge, UK, 20-87.
    England (1984) Inshore Fishing (Scotland) Act 1984.
    Food and Agriculture Organisation (FAO). 1983. Report of the assistance to rangeland and livestock development. Survey of Balochistan FAO technical co-operation programme report, TCP/PAK/0107. FAO Islamabad, Pakistan.
    UNCCD (1994) United Nations convention to combat drought and desertification in countries experiencing serious droughts and/or desertification, particularly in Africa. Particularly in Africa.
    United States Congress (1971) Chapter 90.54 RCW: WATER RESOURCES ACT OF 1971.
    USACE(Hydrologic Engineering Center) (1975). "Hydrologic engineering methods for water resources development: Vol. 8, Reservoir Yield." US Army Corps of Engineers, Davis, California.
    González Villela, R. & M. J. M. MARTÍNEZ (2018) Effects Of Climate Change On Water Availability For The Usumacinta River Environmetal Flow (Mexico). Water Studies, 101.
    Hayes, M. J., M. D. Svoboda, D. A. Wiihite & O. V. Vanyarkho (1999) Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American meteorological society, 80, 429-438.
    Hsu, N. S., & Cheng, K. W. (2002). Network flow optimization model for basin-scale water supply planning. Journal of water resources planning and management, 128(2), 102-112.
    Hu, W. W., Wang, G. X., Deng, W., & Li, S. N. (2008). The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecological Engineering, 33(3-4), 233-241.
    Horwitz, R. J. (1978) Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs, 48, 307-321.
    Jowett, I. (1997) Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management, 13, 115-127.
    Karr, J. R. & E. W. Chu. (1998). Restoring life in running waters: better biological monitoring. Island Press.
    McKee, T. B., N. J. Doesken & J. Kleist.(1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 179-183. American Meteorological Society Boston, MA.
    Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga (2005) Fragmentation and flow regulation of the world's large river systems. Science, 308, 405-408.
    Olden, J. D. & N. Poff (2003) Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19, 101-121.
    Orth, D. J. & P. M. Leonard (1990) Comparison of discharge methods and habitat optimization for recommending instream flows to protect fish habitat. Regulated Rivers: Research & Management, 5, 129-138.
    Palmer, L. (2015). Water politics and spiritual ecology: Custom, environmental governance and development. Routledge.
    Palmer, W. C. (1968) Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise, 21, 156-161.
    Palmer, M. A., Menninger, H. L., & Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?. Freshwater biology, 55, 205-222.

    Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., ... & Stromberg, J. C. (1997). The natural flow regime. BioScience, 47(11), 769-784.
    Poff, N. L. (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the north american Benthological society, 16, 391-409.
    Poff, N. L. & J. D. Allan (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606-627.
    Poff, N. L. & J. K. Zimmerman (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55, 194-205.
    Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun (1996) A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10, 1163-1174.
    Richter, B. D., Mathews, R., Harrison, D. L., & Wigington, R. (2003). Ecologically sustainable water management: managing river flows for ecological integrity. Ecological applications, 13(1), 206-224.
    Shafer, B. & L. Dezman. (1982). Development of surface water supply index–a drought severity indicator for Colorado. In Proceedings of Western Snow Conference, 164-175.
    Suen, J. P., & Eheart, J. W. (2006). Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water resources research, 42(3).

    Tennant, D. L. (1976) Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1, 6-10.
    Tharme, R. E. (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River research and applications, 19, 397-441.
    Thom, H. C. S. (1966). Technical Report No. 81. WMO, Geneva.
    Tsakiris, G. & H. Vangelis (2005) Establishing a drought index incorporating evapotranspiration. European water, 9, 3-11.
    Wang, Y., Rhoads, B. L., & Wang, D. (2016). Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: potential ecological implications. Hydrological processes, 30(21), 3949-3966.
    Wayne, C. P. (1965) Meteorological drought. US weather bureau research paper, 58.
    Wilhite, D. A. & M. H. Glantz (1985) Understanding: the drought phenomenon: the role of definitions. Water international, 10, 111-120.
    Woli, P., J. W. Jones, K. T. Ingram & C. W. Fraisse (2012) Agricultural reference index for drought (ARID). Agronomy Journal, 104, 287-300.
    World Meteorological Organization, Water resources and climatic change: Sensitivity of water res ource system to climatic change, WMO/TP 247, Geneva, 26 pp., 1987.
    吳富春、胡通哲(1998),應用棲地模式估算台灣河川之生態流量,第九屆水利工程研討會,中央大學。
    李哲仲(2014),行為者模式於水資源管理之應用。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/ddk5q2
    陳堯風、林信初(2002),威脅河川之因素,American Rivers。
    陳憲宗、曾宏偉、林錦源、楊道昌、游保杉(2011),氣候變遷情境下曾文水庫集水區水文乾旱特性推估,農業工程學報,57(3), 44-60。
    張騌麒(2008),結構方程模式於探討水文指標與溪流生態系統關聯性之研究。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/8h54zs
    萬象、廖元熙、張文綺(2000),應用乾旱指標於乾旱管理之研究,第十一屆水利工程研討會,台北,67-72。
    楊道昌,郭俊超,呂季蓉,游保杉(2005),標準化降雨指標應用於農業乾旱監測之研究,農業工程學報51卷2期,11-25。
    經濟部水資源局(1996),水資源政策白皮書,經濟部水資源局。
    經濟部水利署(2009),台灣地區水資源開發綱領計畫,經濟部水利署。
    經濟部水利署(2012),融合多重雨量資訊於水庫集水區即時雨量推估及入庫流量預報技術之研究(1-2),經濟部水利署。
    經濟部水利署南區水資源局(2013),曾文水庫集水區土地變異及土砂災害監測成果報告,經濟部水利署南區水資源局。
    經濟部水利署水利規劃試驗所(2013),曾文南化水庫聯通管輸水工程可行性分析,經濟部水利署水利規劃試驗所。
    經濟部水利署南區水資源局(2006),曾文水庫基準供水量,經濟部水利署南區水資源局。
    蕭政宗、吳富春(2004),集集攔河堰最佳引水與河川生態流量之研究,第十四屆水利工程研討會,交通大學。
    蕭政宗、吳富春(2005),變異範圍法 RVA 應用於河川生態流量之規劃,第二屆生態工程學術研討會,台灣大學。

    下載圖示 校內:2022-09-03公開
    校外:2022-09-03公開
    QR CODE