| 研究生: |
張松文 Chang, Song-Wen |
|---|---|
| 論文名稱: |
以氧化鐵磁性奈米粒子分離伴刀豆球蛋白之研究 Separation of Concanavalin A by Iron Oxide Magnetic Nanoparticles |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 幾丁聚醣 、氧化鐵 、聚丙烯酸 、伴刀豆球蛋白 |
| 外文關鍵詞: | chitosan, iron oxide, Poly(acrylic acid), Concanavalin A |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關聚丙烯酸(PAA)與幾丁聚醣(Chitosan)被覆之氧化鐵磁性奈米粒子的製備及其作為磁性奈米吸附材料應用於吸附伴刀豆球蛋白的研究。
關於被覆PAA之磁性奈米粒子的製備,首先以化學共沈澱法製備出Fe3O4磁性奈米粒子,然後將PAA藉碳二醯胺活化直接共價鍵結在磁性奈米粒子上,使磁性粒子表面帶有羧基,形成具有離子交換功能之磁性奈米載體,並藉由穿透式電子顯微鏡(TEM)、X射線繞射儀(XRD)得知磁性奈米粒子在共價鍵結PAA後,其大小、結構並無明顯改變。由傅立葉轉換紅外線光譜儀(FTIR)、熱重分析儀(TGA)、熱差分析儀(DTA)與光學分析法分析可確認PAA已共價鍵結在磁性奈米粒子上。此外,也以界面電位(Zeta potential)儀量測粒子表面帶電特性的變化。當以被覆PAA之磁性奈米粒子吸附伴刀豆球蛋白時,發現吸附平衡所需時間約為40分鐘,且在pH4的磷酸鹽緩衝溶液中具有最佳的吸附效果。而由動力學數據得知此吸附行為接近擬二階吸附模式,且無內部擴散阻力存在。又當鹽類濃度上升時,蛋白質吸附量會減少,且藉溶液pH變化與提升鹽類濃度進行脫附,均可於20分鐘以內達到脫附平衡,且脫附比率分別為80%與30%。此外,恆溫吸附曲線顯示吸附行為符合Lamgumuir恆溫吸附模式,其最大吸附容量(qm)和Langmuir平衡常數(KL)分別為175.33mg/g與3.95ml/mg。當使用磁性奈米粒子吸附白鳳豆萃取液時,由於PAA對蛋白質並無特異性作用力,故雖能吸附白鳳豆中伴刀豆球蛋白,但選擇性不高。
關於幾丁聚醣被覆之氧化鐵磁性奈米粒子的製備,係先將幾丁聚醣羧基甲基化,再藉由碳二醯胺的活化將羧基甲基化幾丁聚醣共價鍵結在氧化鐵奈米粒子上,然後利用穿透式電子顯微鏡、X射線繞射光譜儀、傅立葉轉換紅外線光譜儀、熱重分析儀、熱差分析儀與光學分析法分析可確認所得產品的特性。當以被覆幾丁聚醣之磁性奈米粒子吸附伴刀豆球蛋白時,發現吸附平衡所需的時間約為30分鐘,且在pH5的磷酸鹽緩衝溶液中具有最佳的吸附效果,並推測氫鍵為主要的作用力。此外,也探討螯合重金屬之幾丁聚醣磁性奈米粒子吸附伴刀豆球蛋白的行為。發現被覆幾丁聚醣之磁性奈米粒子螯合Ni(II)與Co(II)之後,對蛋白質吸附量有明顯的抑制效果,而在螯合Cu(II)之後則無明顯的影響。
This thesis concerns the preparation of polyacrylic acid (PAA) bound and chitosan bound iron oxide magnetic nanoparticles and their use for the adsorption of Concanavalin A (Con A).
For the preparation of PAA bound iron oxide magnetic nanoparticles, Fe3O4 magnetic nanoparticles were synthesized by the coprecipitation method first. Then, PAA was covalently bound onto magnetic nanoparticles via carbodiimide activation to form the magnetic nano-carrier with carboxylic groups for ion exchange. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses revealed that the PAA binding did not result in the significant changes in the size and structure of Fe3O4 cores. The binding of PAA on magnetic nanoparticles was demonstrated by the observation of Fourier Transform Infra Red (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA), and spectrophotometric assay (OPA method). The surface charge was measured by a zeta potential meter. Using PAA bound magnetic nanoparticles to adsorb Con A, it was found that the time required to achieve the adsorption equilibrium was about 40 min and a maximum adsorption capacity was obtained in the phosphate buffer at pH 4. The kinetic adsorption data revealed that the adsorption process could be described by a pseudo second-order model equation and had no internal diffusion resistance. Also, the adsorption capacity decreased with the increase in the salt concentration. By varying the solution pH or increasing the salt concentration, the desorption equilibrium of Con A could be achieved in 20 min. In addition, the adsorption data obeyed the Langmuir isotherm equation. The maximum adsorption capacity and equilibrium constant were found to be 175.33mg/g and 3.95ml/mg, respectively. Because PAA has no specific interaction with Con A, the PAA bound magnetic nanoparticles could adsorb effectively Con A from Jack Bean extract but the selectivity was low.
For the preparation of chitosan bound iron oxide nanoparticles, chitosan was carboxymethylated first and then covalently bound onto the surface of iron oxide nanoparticles via carbodiimide activation. The product was characterized by TEM , XRD, FTIR spectroscopy, TGA, DTA, OPA method, and zeta potential. Using chitosan bound magnetic nanoparticles to adsorb Con A, it was found that the time required to achieve the adsorption equilibrium was about 30 min and the maximum adsorption capacity was obtained in the phosphate buffer at pH 5. It was suggested that the main interaction was hydrogen bonding. In addition, investigating the adsorption behaviors of Con A by the metal ions chelated chitosan bound magnetic nanoparticles, it was found that the adsorption capacity increased slightly for Cu(II) chelated chitosan bound magnetic nanoparticles but significantly decreased for Ni(II) or Co(II) chelated chitosan bound magnetic nanoparticles.
1. 張立德,牟季美,奈米材料與奈米結構,台中:滄海 (2002)。
2. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M.
Panigrahi, and T. Pal, “Synthesis of Aucore-Agshell
Type Bimetallic Nanoparticles for Single Molecule
Detection in Solution by SERS Method,” J. Nanopart.
Res., 6, 53 (2004).
3. Y. Li, H. Zhong, R. Li, Y. Zhou, C. Yang, and Y. Li,
“High-Yield Fabrication and Electrochemical
Characterization of Tetragonal CdSe, CdTe, and CdSexTe1-
x Nanocrystals,” Adv. Funct. Mater., 16, 1705 (2006).
4. K. Mohanta, S. K. Majee, S. K. Batabyal, and A. J. Pal,
“Electrical Bistability in Electrostatic Assemblies of
CdSe Nanoparticles,” J. Phys. Chem. B, 110, 18231
(2006).
5. K. J. Klabunde, Nanoscale Materials in Chemistry, John
Wiley & Sons (2004).
6. 尹邦耀,奈米時代,臺北:五南(2002) 。
7. 吳國卿,董玉蘭,奈米粒子材料的觸媒性質,化工資訊,5,42
(1999)。
8. 麥守義,磁性奈米吸附劑的製備與應用,國立成功大學化學工程
研究所博士論文 (2006)。
9. 連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成
功大學化學工程研究所碩士論文(2004)。
10. N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov, and A.
L. Rogach, “Luminescent Polymer Microcapsules
Addressable by a Magnetic Field,” Langmuir, 20, 1449
(2004).
11. X. Hu, W. Cheng, T. Wang, E. Wang, and S. Dong, “Well-
Ordered End-to-Linkage of Gold Nanorods,”
Nanotechnology, 16, 2164 (2005).
12. X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai,
and T. Li, “Fabrication of Magnetic Luminescent
Nanocomposite by a Layer-by-Layer Self-assembly
Approach,” Chem. Mater., 16, 4022 (2004).
13. W. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Cao, S.
X. Wang, S. S. Gambhir, and X. Chen, “Peptide-Labeled
Near-Infrared Quantum Dots for Imaging Tumor
Vasculature in Living Subjects,” Nano Lett., 6, 669
(2006).
14. S. Lee, N. Lee, J. Park, B. H. Kim, Y. W. Yi, T. Kim,
T. K. Kim, I. H. Lee, S. R. Paik, and T. Hyeon,
“Ni/NiO Core/Shell Nanoparticles for Selective Binding
and Magnetic Separation of Histidine-Tagged
Proteins,”J. Am. Chem. Soc., 128, 10658 (2006).
15. F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang,
“Luminescent Nanomaterials for Biological Labelling,”
Nanotechnology, 17, R1 (2006).
16. Z. G. Peng, K. Hidajat, and M. S. Uddin, “Adsorption
of Bovine Serum Albumin on Nanosized Magnetic
Particles,” J. Colloid Interface Sci., 271, 277
(2004).
17. Q. A. Pankhurst, J. Connolly, S. K. Jones ,and J.
Dobson, “Applications of Magnetic Nanoparticles in
Biomedicine,” J. Phys. D: Appl. Phys., 36, R167
(2003).
18. D. B. Shieh, C. H. Su, F.Y. Chang, Y. N. Wu, W. C. Su,
J. R. Hwu, J. H. Chen, and C.S. Yeh, “Aqueous Nickel-
Nitrilotriacetate Modified Fe3O4-NH+3 Nanoparticles
for Protein Purification and Cell Targeting,”
Nanotechnology, 17, 4174 (2006).
19. S. R. Ahmed, A. B. Kelly, and T. A. Barbari,
“Controlling the Orientation of Immobilized Proteins
on an Affinity Membrane through Chelation of a
Histidine Tag to a Chitosan-Ni Surface,” J. Membr.
Sci., 280,553 (2006).
20. B. R. Pieter, R. A. Williams, and C. Webb, Colloid and
Surface Engineering: Applications in the Process
Industries, London: Butterworth (1992).
21. P. Prikryl, D. Horak, M. Ticha, and Z. Kucerova,
“Magnetic IDA- Modified Hydrophilic Methacrylatebased
Polymer Microspheres for IMAC Protein Separation,” J.
Sep. Sci., 29, 2541 (2006).
22. J. Porath, J. Carlsson, I. Olsson, and G. Belfrage,
“Metal Chelate Affinity Chromatography, A New Approach
to Protein Fractionation,” Nature, 258, 598 (1975).
23. H. E. Horng, S. T. Yang, Y. W. Huang, W. Q. Jiang, C.
Y. Hong, and H. C.Yang, “Nanomagnetic Particles for
SQUID-Based Magnetically Labeled Immunoassay,” IEEE
Transactions on applied superconductivity, 15, 668
(2005).
24. M. Franzreb, M. Siemann-Herzberg, T. J. Hobley, and O.
R. T. Thomas, “Protein Purification Using Magnetic
Adsorbent Particles,” Appl. Microbiol. Biotechnol.,
70, 505 (2006).
25. A. Naeem, R. H. Khan, and M. Saleemuddin, “Single
Step Immobilized Metal Ion Affinity
Precipitation/Chromatography Based Procedures for
Purification of Concanavalin A and Cajanus cajan
Mannose-Specific Lectin,” Biochemistry(Moscow), 71,
56 (2006).
26. 廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成
功大學化學工程研究所博士論文(2002)。
27. 鄭豐裕,四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的
應用, 國立成功大學化學研究所博士論文(2006)。
28. Y. C. Chang and D. H. Chen, “Preparation and
Adsorption Properties of Monodisperse Chitosan-Bound
Fe3O4 Magnetic Nanoparticles for Removal of Cu(II)
Ions,” J. Colloid Interface Sci., 283, 446 (2005).
29. Y. C. Chang, S. W. Chang, and D. H. Chen, “Magnetic
Chitosan Nanoparticles: Studies on Chitosan Binding
and Adsorption of Co(II) Ions,” React. Funct. Polym.,
66, 335 (2006).
30. D. H. Chen and M. H. Liao, “Preparation and
Characterization of YADH-Bound Magnetic
Nanoparticles,” J. Mol. Catal. B: Enzym., 16, 283
(2002).
31. S. H. Huang, M. H. Liao, and D. H. Chen, “Direct
Binding and Characterization of Lipase onto Magnetic
Nanoparticles,” Biotechnol. Progr., 19, 1095 (2003).
32. A. K. Gupta and M. Gupta, “Synthesis and Surface
Engineering of Iron Oxide Nanoparticles for Biomedical
Applications,” Biomaterials, 26, 3995 (2005).
33. A. Wittemann, B. Haupt, and M. Ballauff, “Adsorption
of Proteins on Spherical Polyelectrolyte Brushes in
Aqueous Solution,” Phys. Chem. Chem. Phys., 5, 1671
(2003).
34. O. Hollmann, T. Gutberlet, and C. Czeslik, “Structure
and Protein Binding Capacity of a Planar PAA Brush,”
Langmuir, 23, 1347 (2007).
35. H. Dou, M. Jiang, H. Peng, D. Chen, and Y. Hong, “pH-
Dependent Self-Assembly: Micellization and Micelle–
Hollow-Sphere Transition of Cellulose-Based
Copolymers,” Angew. Chem. Int. Ed., 42, 1516. (2003).
36. C. Kumar, Nanotechnologies for the Life Sciences
Volume 2 -- Biological and Pharmaceutical
Nanomaterials, Wiley, John & Sons (2006).
37. J. C. Fernandes, M. J. Tiera, and F. M. Winnik,
Biological and Pharmaceutical Nanomaterials, John
Wiley & Sons (2006).
38. J. B. Sumner and S. F. Howell, “The Identification of
the Hemagglutinin of the Jack Bean With Concanavalin
A,” Journal of Bactebiology, 32, 227 (1936).
39. W. Huang, Z. Dong, H. Wei, C. Ding, R. Sun, and Z.
Tian, “Selective Elimination of Hepatic Natural
Killer T Cells with Concanavalin A Improves Liver
Regeneration in Mice,” Liver International, 26, 339
(2006).
40. A. Pashov, S. MacLeod, R. Saha, M. Perry, T. C.
VanCott, and T. Kieber-Emmons, “Concanavalin A
Binding to HIV Envelope Protein is Less Sensitive to
Mutations in Glycosylation Sites than Monoclonal
Antibody 2G12,” Glycobiology, 15, 994 (2005).
41. K. Sato and J. I. Anzai, “Fluorometric Determination
of Sugars Using Fluorescein - Labeled Concanavalin A -
Glycogen Conjugates,” Anal Bioanal Chem., 384, 1297
(2006).
42. X. Xu, H. Wei, Z. Dong, Y. Chen, and Z. Tian, “The
Differential Effects of Low Dose and High Dose
Concanavalin A on Cytokine Profile and Their
Importance in Liver Injury,” Inflamm. Res., 55, 144
(2006).
43. M. L. Stewart, D. F. Summers, R. Soeiro, B. N. Fields,
and J. V. Maizel, “Purification of Oncornaviruses by
Agglutination with Concanavalin A,” Proc. Nat. Acad.
Sci. USA, 70, 1308 (1973).
44. N. Bereli, S. A. l, H. Yavuz, and A. Denizli,
“Antibody Purification by Concanavalin A Affinity
Chromatography,” J. Appl. Polym. Sci., 97, 1202
(2004).
45. M. Witvrouw, V. Fikkert, A. Hantson, C. Pannecouque,
B. R. O'Keefe, J. McMahon, L. Stamatatos, E. d.
Clercq, and A. Bolmstedt, “Resistance of Human
Immunodeficiency Virus Type 1 to the High-Mannose
Binding Agents Cyanovirin N and Concanavalin A,” J.
Virol., 79, 7777 (2005).
46. Z. Pei, T. Aastrup, H. Anderson, and O. Ramstrom,
“Redox-Responsive and Calcium-Dependent Switching of
Glycosyldisulfide Interactions with Concanavalin A,”
Bioorg. Med. Chem. Lett., 15, 2707 (2006).
47. G. M. Edelman, B. A. Cunningham, G. N. Reeke, J. W.
Becker, M. J. Waxdal, and J. L. Wang, “The Covalent
and Three-Dimensional Structure of Concanavalin A,”
Proc. Nat. Acad. Sci. USA, 69, 2580 (1972).
48. J. L. Wang, B. A. Cunningham, and G. M. Edelman,
“Unusual Fragments in the Subunit Structure of
Concanavalin A,” Proc. Nat. A cad. Sci. USA, 68, 1130
(1971).
49. G. Entlicher, J. V. Kostir, and J. Kocourek, “Studies
on phytohemagglutinins. VIII. Isoelectric Point and
Multiplicity of Purified Concanavalin A,” Biochim.
Biophys. Acta., 236, 795 (1971).
50. K. J. Laidler, J. H. Meiser, and B. C. Sanctuary,
Physical Chemistry, Houghton Mifflin Company College
Division (2003).
51. M. Syvanen and H. K. Schachman, “Donnan Effect as
Measured by Sedimentation Equilibrium for the Protein
Cytochrome C,” Biopolymers, 17, 943 (1977).
52. E. L. V. Harris, Protein Purification Methods:A
Practical Approach, Oxford University Press (1989).
53. S. D. Faust and O. M. Aly, Adsorption Processes for
Water Treatment, Boston : Butterworth (1987).
54. W. D. J. Callister, Materials Science and Engineering:
An Introduction, Wiley, John & Sons (2002).
55. 馬振基,奈米材料科技原理與應用,台北:全華科技(2003)。
56. 張揚狀,表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應
用,國立成功大學化學工程學系博士論文(2005)。
57. M. A. Willard, L. K. Kurihara, E. E. Carpenter, S.
Calvin, and V. G. Harris, Encyclopedia of Nanoscience
and Nanotechnology, American Scientific Publishers
(2004).
58. L. C. Cullity, Introduction to Magnetic Materials,
California: Addison- Wesley (1972).
59. W. M. Saslow, Electricity, Magnetism, and Light,
Netherlands: Elsevier (2002).
60. V. G. Janolino and H. E. Swaisgood, “A
Spectrophotometric Assay for Solid Phase Primary Amino
Groups,” Appl. Biochem. Biotechnol., 36, 81 (1992).
61. A. Heeboll-Nielsen, M. Dalkiaer, J. J. Hubbuch, and O.
R. T. Thomas, “Superparamagnetic Adsorbents for High-
Gradient Magnetic Fishing of Lectins Out of Legume
Extracts,” Biotechnol. Bioeng., 87, 311 (2004).
62. H. Lis and N. Sharon, “Lectins: Carbohydrate-Specific
Protein That Mediate Cellular Recognition,” Chem.
Rev., 98, 637 (1998).
63. R. F. Hamon, A. S. Khan, and A. Chow, “The Cation-
Chelation Mechanism of Metal-Ion Sorption by
Polyurethanes,” Talanta, 29, 313 (1982).
64. X. G. Chen and H. J. Park, “Chemical Characteristics
of O-Carboxymethyl Chitosans Related to the
Preparation Conditions,” Carbohydr. Polym., 53, 355
(2003).
65. T. C. A. Phan, K. J. Nowak, P. A. Akkari, M. H. Zheng,
and J. Xu, “Expression of Caltrin in the Baculovirus
System and Its Purification in High Yield and Purity
by Cobalt (II) Affinity Chromatography,” Protein
Expression and Purification, 29, 284 (2003).