| 研究生: |
顏劭安 Yan, Shao-An |
|---|---|
| 論文名稱: |
BaO-La2O3-WO3三元系統化合物螢光粉之光致發光特性研究 Photo-luminescence properties of BaO-La2O3-WO3 ternary system based phosphors |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 螢光粉 、稀土元素 、光致發光 |
| 外文關鍵詞: | phosphor, rare-earth ions, photoluminescence |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以鎢酸鹽類之BaLa2WO7為主體晶格材料,並以三價稀土金屬離子Eu3+、Dy3+、Sm3+、Er3+、Ho3+、Tb3+與Tm3+等摻雜於主體晶格中取代La3+位置作為活化劑,同時討論其材料合成與發光特性。同時又以Sr2+與Ca2+取代晶格中Ba2+位置,造成一晶格畸變,觀察對整體性質造成之影響。
由實驗結果顯示,以固態反應法配合高能震動球磨所製備之BaLa2WO7: Ln3+(Ln3+ = Eu3+、Dy3+、Sm3+、Er3+、Ho3+、Tb3+、Tm3+)螢光粉,在900 ~ 1350°C之煆燒溫度下可形成穩定之BaLa2WO7單斜晶單一相,而所摻雜之稀土離子可和晶格中之La3+相互取代形成固溶體,並且對表面形態不會產生太大影響,系統仍可維持一定的穩定性。
BaLa2WO7: Ln3+螢光粉體展現出強烈的W6+-O2-間電荷轉移吸收帶,而由於Ln3+-O2-之共價性太低,導致其CTS(charge transfer state)無法有效轉移給稀土離子發光,因此主要是由W6+-O2-之電荷轉移帶與稀土離子之4f內層軌域躍遷進行發光。在以Eu3+為活化劑發光中心時,產生的放光可由Eu3+離子濃度控制。在低濃度時較高能階之藍、綠光放光較強,隨摻雜量提高,5D0 → 7FJ (J=0, 1, 2)紅光放光將成為主要放光,因此其色度座標可由Eu3+摻雜濃度而改變,在適當之摻雜濃度下,BaLa2WO7: Eu3+可產生單一發光中心之白光。經由(5D0 → 7F2) / (5D0 → 7F1)非對稱指數可發現,Eu3+離子於主體晶格中佔據非對稱中心,而隨摻雜量增加,非對稱指數會持續上升直至晶格扭曲變形而產生相轉換。BaLa2WO7: Dy3+則可產生明顯之4F9/2 → 6H13/2與4F9/2 → 6H15/2之黃光與藍光放光,由於強度接近,因此其產生之光色相當接近於白光,且放光強度比例不因Dy3+摻雜量而有所改變。而經由發射光譜與衰減曲線分析,可發現Sm3+離子之4G5/2能階、Er 3+離子之4S3/2能階、Tm 3+離子之1D2能階與Ho 3+離子之5S2能階皆能產生強烈放光,且易受濃度淬滅效應影響,在低濃度下便會發生交叉緩解而使放光強度降低,同時其發光之衰減曲線亦因交叉緩解現象而產生改變,使衰減曲線呈非自然指數之衰減行為。
當以Sr2+與Ca2+取代晶格中Ba2+位置調整結構時,可發現Sr2+與Ba2+之間由於性質接近,可產生較大的固溶量而不造成結構改變。當Sr2+取代Ba2+進入晶格中,整體晶格產生變形,發光中心間之能量轉換效率增加,使放光強度因此而增強,但不改變原本放光性質,經由比對Eu3+離子(5D0 → 7F2) / (5D0 → 7F1)與Dy3+離子(4F9/2 → 6H13/2)/(4F9/2 → 6H15/2)在摻雜Sr2+之比值,可發光Sr2+並不會改變發光中心之周圍晶格環境。而Ca2+與Ba2+間之離子半徑差異較大,導致Ca2+取代時造成較大之變形,因此固溶量較低,且過大的變形降低了結晶性,雖可調整發光中心周圍對稱性,進而改變放光比例,但亦會造成整體發光強度下降。
本研究所製備之螢光粉具備各種色系,包括紅色:Sm3+與Eu3+、綠色:Er3+與Ho3+、藍色:Tm3+、近白色:Dy3+,最佳激發波長皆位於350 ~ 450 nm之間,在近紫外光與藍光區均能應用,顯示其具有發展成為白光LED照明系統之螢光粉的應用潛力。
In this work, BaLa2WO7: Ln3+(Ln3+ = Eu3+, Dy3+, Sm3+, Er3+, Ho3+, Tb3+, Tm3+) phosphors have been synthesized via a solid-state reaction. The absorption, excitation, emission and decay curves were obtained to study the luminescence properties. The effects of substituting Ba2+ with Sr2+ and Ca2+ in BaLa2WO7: Ln3+ to improve the optical properties are also studied.
The experimental results indicated that the crystal can be assigned to the structural nature of the BaLa2WO7 single phase as the calcination temperature in the range of 900 ~ 1350°C, and the rare-earth ions were satisfactorily substituted for the La3+ ions in BaLa2WO7 monoclinic structure. BaLa2WO7 doped with rare-earth ions at different doping concentrations do not significantly affect morphology.
The broad band located around 338 nm of the excitation spectrum is due to the charge-transfer state (CTS) band caused by electron transfer from oxygen to tungsten (ligand-to-metal charge-transfer transitions, LMCT). However, the CTS band of the oxygen 2p orbital to the empty 4f orbital of Ln3+ is weak and immersed in the CTS band of WO6 due to their week covalency. The sharp peaks in the range of 350 to 600 nm are assigned to the typical intra-4f forbidden transitions of the Ln3+ ions. The emission spectra of Eu3+-doped BaLa2WO7 phosphors excited at 395 nm exhibit a series of sharp peaks, which are attributed to the 5D0 → 7FJ (J=0,1,2,3,4) transitions. Luminescence from higher excited states, such as 5D1, 5D2, and 5D3, were also observed at low Eu3+ concentration. The optimal emission intensity of 5D0 → 7F2 red emission is at x=0.4 (BaLa1.6Eu0.4WO7). The chromaticity coordinates of Eu3+-doped BaLa2WO7 phosphors vary with Eu3+ content from white, orange-red, to red. The (5D0 → 7F2) / (5D0 → 7F1) asymmetry ratio increased with increasing Eu3+ concentration, reveling that the local structural symmetry around Eu3+ significantly changed as Eu3+ became incorporated into BaLa2WO7. Dy3+-doped BaLa2WO7 phosphors emit bright near-white light. Under an excitation wavelength of 351 nm, two dominant emission peaks were seen at 485 and 572 nm, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+, respectively. The intensity of the emission from the 4F9/2 → 6H15/2 transition was higher than that from the 4F9/2 → 6H13/2 transition, revealing that Dy3+ occupied a relatively symmetrical site in BaLa2WO7: Dy3+. The doping of Dy3+ ions did not change the site symmetry even at a high concentration.
By analyzing the emission spectra and decay behaviors, the energy transfer due to cross-relaxation and concentration quench effect over ion-ion interaction between two neighboring rare-earth ions provide an extra decay channel, the luminescence centers have different local environments and the existence of more than one relaxation process. When excitation energy from an ion decaying from a highly excited state promotes a nearby ion from the ground state to the metastable level, cross-relaxation can occur easily between two neighboring rare-earth ions, such as Sm3+(4G5/2), Er3+(4S3/2), Tm3+ (1D2), and Ho3+(5S2).
Introducing Sr2+ into Ba2+ site can further enhance the emission intensity but do not change the site symmetry around rare-earth ions. However, the substitution of Ba2+ by Ca2+ leads to an intense crystal distortion, resulting in a degradation of the local site symmetry around Eu3+ and Dy3+. Consequently, the color of Ca-substituted phosphors, Ba1-yCayLa2WO7: Dy3+, can be tuned by increasing Ca2+ content.
All synthesized phosphors in the study can emit different colors by doping different kinds of activators and varying doping concentrations, such as white to red (Eu3+), green (Er3+, Ho3+), orange-red (Sm3+), blue (Tm3+), and near-white (Dy3+). The experimental results revel that the excitation wavelength of BaLa2WO7: Ln3+ phosphors and the emission wavelength of blue- and UV-LEDs (350 ~ 450 nm) have closely overlapped, and the sharp emission peaks show that BaLa2WO7 is suitable for rare-earth-doped phosphors, making it an attractive candidate for use in optical applications.
[1] M. J. Shane, T. B. Talbot, E. Sluzky, and K. R. Hesse, “Zeta potential of phosphors”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96 (1995) 301-305.
[2] F. Levy and R. Meyer, “Phosphors for Full-Color Microtips Fluorescent Displays”; Proceedings of the International Display Research Conference, SID (1992) 20-23.
[3] M. Ando and Y. A. Ono, “Electro-optical response characteristics of rare-earth-doped alkaline-earth-sulfide electroluminescent devices”, Journal of Applied Physics, 65 (1989) 3290-3292.
[4] V. Sivakumar and U. V. Vardaraju, “Intense red-emitting phosphors for white light emitting diodes”, Journal of The Electrochemical Society, 152 (2005) H168-H171.
[5] A. H. Kitai, “Oxide phosphors and dielectric thin films for electroluminescent devices”, Thin Solid Films, 445 (2003) 367-376.
[6] C. Duan, J. Yuan, X. Yang, J. Zhao, Y. Fu, G. Zhang, Z. Qi, and Z. Shi, “Luminescent properties of REBa3B9O18 (RE = Lu, Tb, Gd, Eu) under VUV excitation”, Journal of Physics D: Applied Physics, 38 (2005) 3576-3579.
[7] A. Komeno, K. Uematsu, K. Toda, and M. Sato, “VUV properties of Eu-doped alkaline earth magnesium silicate”, Journal of Alloys and Compounds, 871 (2006) 408-412.
[8] T. Wanjun, C. Donghua, and W. Ming, “Luminescence studies on SrMgAl10O17: Eu, Dy phosphor crystals”, Optics & Laser Technology, 41 (2009) 81-84.
[9] P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film electroluminescent displays”, Materials Science and Engineering B, R21 (1998) 171-219.
[10] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material”, U. S. Pat., 5998925 (1998).
[11] Q. Y. Shao, H. J. Li, Y. Dong, J. Q. Jiang, C. Liang, and J. H. He, “Temperature-dependent photoluminescence studies on Y2.93xLnxAl5O12:Ce0.07 (Ln=Gd, La) phosphors for white LEDs application”, Journal of Alloys and Compounds, 498 (2010) 199–202.
[12] 劉如熹、王健源, “白光發光二極體用製作技術”, 全華科技, (2001) pp.12-20.
[13] 劉如熹、紀喨勝, “紫外光發光二極體用螢光粉介紹”, 全華科技, (2003) pp.26-38.
[14] 莊賦祥, “藍綠光發光二極體“, 科學發展349期, (2002) pp.46-47.
[15] 楊素華, ”螢光粉在發光上的應用”, 科學發展349期 (2002) pp. 66-71.
[16] T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors”, Applied Physics Letters, 82 (2003) 3817.
[17] X. Liu, C. Lin, and J. Lin, “White light emission from Eu3+ in CaIn2O4 host lattice.”, Applied Physics Letters, 90 (2007) 081904.
[18] K. Toda, Y. Kawakami, S. I. Kousaka, Y. Ito, A. Komeno, K. Uematsu, and M. Sato, “New silicate phosphors for a white LED”, IEICE Transactions on Electronics, E89-C (2006) 1406-1408.
[19] S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press (1999) pp. 7.
[20] T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors”, Applied Physics Letters, 82 (2003) 3817.
[21] S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors”, Journal of The Electrochemical Society, 136 (1989) 1819-1823.
[22] X. Liu, C. Lin, and J. Lin, “White light emission from Eu3+ in CaIn2O4 host lattice.”, Applied Physics Letters, 90 (2007) 081904.
[23] C. K. Chang and T. M. Chen, “Sr3B2O6:Ce3+,Eu2+: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes”, Applied Physics Letters, 91 (2007) 081902.
[24] Z. Yu, X. Huang, W. Zhuang, X. Cui, and H. Li, “Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels”, Journal of Alloys and Compounds, 390 (2005) 220-222.
[25] A. A. Evdokimov, and V. K. Trunov, “Investigation of certain tungstate systems”, Russian Journal of Inorganic Chemistry, 18 (1973) 1506-1508.
[26] L. M. Kovba, L. N. Lykova, and V. L. Balashov, “A new compound in the BaO-La2O3-WO3 system”, Russian Journal of Inorganic Chemistry, 30 (1985) 311-314. .
[27] L. M. Kovba, L. N. Lykova, and V. L. Balashov, Russ. “Interaction in the BaO-R2O3-WO3 systems (R = La, Y, Gd) at 1200°C”, Russian Journal of Inorganic Chemistry, 30 (1985) 1210-1212.
[28] B. Betz, H.-J. Schittenhelm, and S. Kemmler-Sack, "Verbindungen vom Typ A22B21/4B31/2Ž1/4M6O6= A28B2B32ŽM64O24 mit A2, B2= Ba, Sr, Ca und M6= U, W”, Zeitschrift für anorganische und allgemeine Chemie, 484 (1982) 177-186.
[29] G. Blasse, G. J. Dirksen, and L. H. Brixner, “The luminescence of Eu3+-activated BaLa4(WO4)7”, Materials Chemistry and Physics, 21 (1989) 293-295.
[30] C. Feldmann, T. Justel, C.R. Ronda, and P.J. Schmidt, “Inorganic luminescent materials: 100 years of research and application”, Advanced Functional Materials, 13 (2003) 511-516.
[31] O. P. Dimitriev, V.V. Kislyuk, “Green luminescence of the europium chloride: dimethylformamide charge-transfer complex “, Chemical Physics Letters, 377 (2003) 149-155.
[32] D. Uhlich, J. Plewa, T. Justel, “Phase formation and characterization of Sr3Y2Ge3O12, Sr3In2Ge3O12, and Ca3Ga2Ge3O12 doped by trivalent europium”, Journal of Luminescence, 128 (2008) 1649-1654.
[33] S. Ye, C. H. Wang, and X. P. Jing, “Photoluminescence and Raman spectra of double-perovskite Sr2Ca(Mo/W)O6 with A- and B- site substitutions of Eu3+”, Journal of The Electrochemical Society, 155 (2008) J148-J151.
[34] C. H. Chiu, C. H. Liu, S. B. Huang, and T. M. Chen, “White-light-emitting diodes using red-emitting LiEu(WO4)2-x(MoO4)x phosphors”, Journal of The Electrochemical Society, 154 (2007) J181-J184.
[35] G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland, (1979) pp.52-68.
[36] G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, (1994) pp. 12-19.
[37] T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep., (1983) pp. 12-25.
[38] 李育群, “鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究”, 國立成功大學材料科學及工程研學系博士論文, 民國96年, pp. 5-19.
[39] D. R. Vij, “Luminescence of Solid”, Plenum Press, New York, (1998) pp. 61.
[40] H. S. Nalwa and L. S. Rohwer, “Handbook of Luminescence, Display Materials, and Devices – Inorganic Display Materials”, American Scientific Publishers, (2003) pp. 62-85.
[41] 陳俞仲, “錫酸鹽M2SnO4(M = Ca, Sr, Zn)螢光粉之合成與螢光特性研究”,國立成功大學材料科學及工程學系博士論文, 民國94年, pp. 11-15.
[42] A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics”, Progress in Quantum Electronics, 26 (2002) 225-284.
[43] B. Henderson and G.F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989) pp. 87-96.
[44] B. DiBartolo, “Energy Transfer Process in Condensed Matter”, Plenum, New York (1984) pp. 45-65.
[45] G. Blasse, K. C. Bleijenberg and R. C. Powell, “Luminescence and Energy Transfer” Springer-Verlag, New York (1980) pp. 8-36.
[46] A. H. Kitai, “Solid State Luminescence” Chapman & Hall, Lomdonp, (1993) pp. 62-83.
[47] G. Blasse, W. Schipper and J. J. Hamelink, “On the quenching of the luminescence of the trivalent cerium ion”, Inorganica Chimica Acta, 189 (1991) 77-80.
[48] G. Blasse, C. de Mello Donegá, N. Efryushina, V. Dotsenko, and I. Berezovskaya, “Luminescence of Pr3+ in indium borate (InBO3)”, Solid State Communications, 92 (1994) 687-689.
[49] P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change” 3rd edition, (1997) pp. 58-61.
[50] R. C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, (1991) pp. 25-41.
[51] S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press (1999) pp. 112-139.
[52] K. Tkacova, “Mechanical activation of minerals”, Elsevier, Amsterdam, (1989) pp. 136-157.
[53] D. J. Gardiner, “Practical Raman spectroscopy”, Springer-Verlag, (1989) pp. 96-121.
[54] V. I. Tsaryuk, and V. F. Zolin, “Vibration and vibronic spectra of lanthanide compounds with different types of coordination polyhedra of tungsten and molybdenum”, Spectrochimica Acta Part A, 57 (2001) 355-359.
[55] J. Ozdanova, H. Ticha, and L. Tichy, “Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100-x-y and (PbO)x(WO3)y(TeO2)100-x-y glasses”, Journal of Non-Crystalline Solids, 355 (2009) 2318-2322.
[56] M. Maczka, M. Ptak, L. Kepinski, P. E. Tomaszewski, and J. Hanuza, “X-ray, SEM, Raman and IR studies of Bi2W2O9 prepared by Pechini method”, Vibrational Spectroscopy, 53 (2010) 199-203.
[57] A. Baserga, V. Russo, F. Di Fonzo, A. Bailini, D. Cattaneo, C.S. Casari, A. Li Bassi, and C.E. Bottani, “Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization”, Thin Solid Films, 515 (2007) 6465-6469.
[58] S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J.P. Deloume, and P. Vernoux, “La(1-x)SrxCo1-yFeyO3 perovskites prepared by sol–gel method: Characterizationand relationships with catalytic properties for total oxidation of toluene”, Applied Catalysis B: Environmental, 88 (2009) 438–447.
[59] M. Fe´rid, and K. Horchani-Naifer, “Synthesis, crystal structure and vibrational spectra of a new form of diphosphate NaLaP2O7”, Materials Research Bulletin, 39 (2004) 2209-2217.
[60] F. Lei, B. Yan, and H. H. Chen, “Solid-state synthesis, characterization and luminescent properties of Eu3+-doped gadolinium tungstate and molybdate phosphors: Gd(2-x)MO6: Eu3+ (M = W, Mo)”, Journal of solid State Chemistry, 181 (2008) 2845-2851.
[61] M. J. J. Lammers, H. Donker, and G. Blasse, “The luminescence of Eu3+, Tb3+ and Tm3+ activated Gd2BaZnO5 and La2BaZnO5”, Materials Chemistry and Physics, 13 (1985) 527-539.
[62] R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer, and H. Hahn. “Luminescence properties of nanocrystalline Y2O3: Eu3+ in different host materials”, Journal of Applied Physics, 89 (2001) 1679-1686.
[63] L. K. Park, J. I. Shn, M. A. Lim, HC. H. Kim, H. D. Park, and S. Y. Choi, “Photoluminescence properties of Eu3+-activated Y2GeO5 phosphors”, Journal of The Electrochemical Society, 150 (2003) H187-H191.
[64] F. N. Shi, J. Meng, and Y. F. Ren, “Structure and luminescence properties of three new silver lanthanide molybdtes”, Journal of Solid State Chemistry, 121 (1996) 236-239.
[65] F. N. Shi, J. Meng, and Y. F. Ren, “Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb, and Dy) compounds”, Journal of Physics and Chemistry of Solids, 59 (1998) 105-110.
[66] S. Ye, C. H. Wang, and X. P. Jing, “Photoluminescence and Raman spectra of double-perovskite Sr2Ca(Mo/W)O6 with A- and B-Site substitutions of Eu3+”, Journal of The Electrochemical Society, 155 (2008) J148-J151.
[67] A. H. Kitai, “Solid State luminescence”, Chapman & Hall, U. K. (1993) pp. 39.
[68] T. Hayakawa, A. Hiramitsu, and M. Nogami, “Demonstration of a nanophotonic switching operation by optical near-field energy transfer”, Applied Physics Letters, 82 (2003) 2975.
[69] C. K. Chang and T. M. Chen, “Sr3B2O6:Ce3+,Eu2+: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes”, Applied Physics Letters, 91 (2007) 081902.
[70] J. Alarcon, and G. Blasse, “Luminescence of Eu3+-doped lanthanum titanate (La2TiO5), a system with one-dimensional energy migration”, Journal of Physics and Chemistry of Solids, 53 (1992) 667-680.
[71] C. H. Liang, Y. C. Chang, and Y. S. Chang, “Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors”, Applied Physics Letters, 93 (2008) 211902.
[72] C. H. Liang, Y. C. Chang, and Y. S. Chang, “Enhancement of luminescence properties by Sr2+ substituting Ba2+ in red-emitting phosphors: Ba1−ySryLa2−xZnO5: xEu (x = 0–1, y = 0–0.7)”, Journal of The Electrochemical Society, 156 (2009) J303-J307.
[73] B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescence properties of MgIn2-xGaxO4: Eu3+ phosphors”, Electrochemical and Solid-State Letters 8 (2005) H55-H57.
[74] S. Freed, “Spectra of ions in fields of various symmetry in crystals and solutions”, Reviews of Modern Physics, 14 (1942) 105-111.
[76] B. R. Judd, “Optical absorption intensities of rare-earth ions”, Physical Review 127 (1962) 750-761.
[75] G. S. Oflet, “Intensities of crystal spectra of rare-earth ions”, Journal of Chemical Phsics, 37 (1962) 511-520.
[76] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, and G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nano powders obtained by wet chemical synthesis”, Journal of Materials Chemistry, 12 (2002) 742-747.
[77] R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, And H von. Seggern, “Photoluminescence properties of nanocrystalline Y2O3: Eu3+ indifferent environments”, Scripta Materialia, 44 (2001) 1213-1217.
[78] M. Inokuti, and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence”, Journal of Chemical Physics, 43 (1965) 1978-1989.
[79] J. A. Kaduk, W. Wing-Ng, W. Greenwood, J. Dillingham, and B. H. Toby, “Crystal structures and reference powder patterns of BaR2ZnO5 (R = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, and Tm)”, Journal of Research of the National Institute of Standards and Technology, 104 (1999) 147-171.
[80] I. Omkaram, and S. Buddhudu, “Photoluminescence properties of MgAl2O4: Dy3+ powder phosphor”, Optical Materials, 32 (2009) 8-11.
[81] P. L. Dai, B. S. Tsai, Y. Y. Tsai, H. L. Chen, T. H. Feng, K. H. Liao, and Y. S. Chang, “Synthesis and luminescence properties of YInGe2O7 phosphors activated by dysprosium ions”, Optical Materials, 32 (2009) 392-397.
[82] M. Yu, J. Lin, Z. Zhang, J. Fu, S. Wang, H.J. Zhang, Y.C. Ham, “Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol−Gel Soft Lithography”, Chemistry of Materials, 14 (2002) 2224-2231.
[83] Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors “, Journal of Alloys and Compounds, 439 (2007) 367-375.
[84] J. L. Sommerdijk and A. Bril, “Efficiency of Dy3+-activated phosphors”, Journal of The Electrochemical Society, 122 (1975) 952-956.
[85] J. L. Sommerdijk, A. Bril, and F. M. J. H. Hoex-Strik, “Luminescence of Dy3+-activated vanadates”, Philips Research Reports, 32 (1977) 149-155.
[86] S. D. Han, S. P. Khatkar, V. B. Taxak, G. Sharma, D. Kumar, “Synthesis, luminescence and effect of heat treatment on the properties of Dy3+-doped YVO4 phosphor”, Materials Science and Engineering: B, 129 (2006) 126-130.
[87] L. Nagli, D. Bunimovich, A. Katzir, O. Gorodetsky, and V. Molev, “The luminescence properties of Dy-doped high silicate glass”, Journal of Non-Crystalline Solids, 217 (1997) 208-214.
[88] I. Omkaram, S. Buddhudu, “Photoluminescence properties of MgAl2O4: Dy3+ powder phosphor”, Optical Materials, 32 (2009) 8-11.
[89] X. Liu, R. Pang, Q. Li, J. Lin, “Host-sensitized luminescence of Dy3+, Pr3+, Tb3+ in polycrystalline CaIn2O4 for field emission displays”, Journal of Solid State Chemistry, 180 (2007) 1421-1430.
[90] C. H. Liang, X. Qi, and Y. S. Chang, “Color tone tuning by partial Sr2+ substitution of Ba2+ in the white phosphors Ba1-ySryLa2-xDyxZnO5 (x = 0.01-0.2, y = 0-0.65)”, Journal of The Electrochemical Society, 157 (2010) J169-J174.
[91] J. L. Sommerdijk and A. Bril, “Efficiency of Dy3+-activated phosphors”, Journal of The Electrochemical Society, 122 (1975) 952-955.
[92] J. L. Sommerdijk, A. Bril, and F. M. J. H. Hoex-Strik, “Luminescence of Dy3+-activated vanadates”, Philips Research Reports, 32 (1977) 149-151.
[93] G. Dominiak-Dzik, W. Ryba-Romanowski, L. Kovacs, and E. Beregi, “Effects of temperature on luminescence and UVU to visible conversion in YAl3(BO4): Dy3+ (YAB: Dy) crystal”, Radiation Measurement, 38 (2004) 557-561.
[94] P. S. May, D. H. Metcalf, F. S. Richardson, R. C. Carter, and C. E. Miller, “Measurement and analysis of excited-state decay kinetics and chiroptical activity in the 6HJ ← 4G5/2 transitions of Sm3+ in trigonal Na3[Sm(C4H4O5)3] • 2NaClO4 • 6H2O”, Journal of Luminescence, 51 (1992) 249-268.
[95] P. Huhtinen, M. Kivela, O. Kuronen, V. Hagren, H. Takalo, H. Tenhu, T. Lovgren, and H. Harma, “Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels “, Analytical Chemistry, 77 (2005) 2643-2648.
[96] Y. C. Ratnakarama, D. Thirupathi Naidua, A. Vijaya Kumara, and N.O. Gopal, “Influence of mixed alkalies on absorption and emission properties of Sm3+ ions in borate glasses”, Physica B, 358 (2005) 296–307.
[97] G. Dominiak-Dzik, “Sm3+-doped LiNbO3 crystal, optical properties and emission cross-sections”, Journal of Alloys and Compounds, 391 (2005) 26–32.
[98] J. B. Gruber, Z. Bahram, and M.F. Reid, “Spectra, energy levels, and transition line strengths for Sm3+:Y3Al5O12”, Physical Review B, 60 (1999) 15643-15653.
[99] L. An, J. Zhang, M. Liu, S. Chen, and S. Wang, “Emission measurements and crystal-field calculations for 4G5/2 to 6H7/2 transitions in Sm3+: YAG “, Optical Materials, 30 (2008) 957-960.
[100] Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors”, Journal of Solid State Chemistry, 171 (2003) 391-395.
[101] G. Blass, and G. J. Dirksen, “A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure”, Journal of The Electrochemical Society, 127 (1980) 978-982.
[102] A. J. Steckl, J. Heikenfeld, D. S. Lee, and M. Garter, “Rare-Earth-Doped GaN Phosphors for Electroluminescent Displays“, Materials Science and Engineering B, 81 (2001) 97-100.
[103] J. Wu, P. Punchaipetch, R. M. Wallace, and J. L. Coffer, “Fabrication and optical properties of erbium-doped germanium nanowires”, Advanced Materials, (Weinheim, Ger.) 16 (2004) 1444-1448.
[104] U. Rambabu, K. Annapurna, T. Balaji, S. Buddhudu, “Fluorescence spectra of Er3+: REOCI (RE = La, Gd, Y) powder phosphors“, Materials Letters, 23 (1995) 143-146.
[105] A. Birkel, A. A. Mikhailovsky, A. K. Cheetham, “Infrared to visible upconversion luminescence properties in the system Ln2BaZnO5 (Ln = La, Gd)“, Chemiscal Physics Letters, 477 (2009) 325–329.
[106] M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3”, Physical Review, 171 (1968) 283-291.
[107] L. Yang, S. Quan, Y. Yang, Z. Li, W. Wang, L. Guo, “Nonlinear blue upconversion luminescence in Gd2O3: Er3+/Yb3+ nanowires”, Solid. State. Communications, 149 (2009) 1814-1817.
[108] C. M. Nascimento and M.J.V. Bell, “Reverse saturable absorption in Er3+ doped systems ”, Journal of Non-Crystalline Solids, 348 (2004) 90-93.
[109] C. H. Chang, B. S. Chiou, K. S. Chen, C. C. Ho, and J. C. Ha, “The effect of In2O3 conductive coating on the luminescence and zeta potential of ZnS: Cu, Al phosphors”, Ceramics International, 31 (2005) 635-640.
[110] Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray yrolysis”, Journal of Luminescence, 93 (2001) 313-319.
[111] Y. Nakanishi, K. Kimura, H. Kominami, H. Nakajima, Y. Hatanaka, and G. Shimaoka, “Dependence of structural and luminescent characteristics of Y2O3:Er thin film phosphors on substrate”. Applied Surface Science, 815 (2003) 212-213.
[112] H. X. Zhang, S. Buddhudu, C. H. Kam, Y. Zhou, Y. L. Lam, K. S. Wong, B. S. Ooi, S. L. Ng, and W. X. Que, “Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors”, Materials Chemistry and Physics, 68 (2001) 31-35.
[113] Z. Xia, W. Zhou, H. Du, and J. Sun, “Synthesis and spectral analysis of Yb3+/Tm3+/Ho3+-doped Na0.5Gd0.5WO4 phosphor to achieve white upconversion luminescence”, Materials Research Bulletin, 45 (2010) 1199-1202.
[114] R. Reisfeld, “Structure and Bounding”, Vol. 22, Springer-Verlag, New York (1975) pp. 56-72.
[115] H. Zhang, X. Fu, S. Niu, Q. Xin, “Blue luminescence of nanocrystalline CaZrO3: Tm phosphors synthesizd by a modified Pechini sol-gel method”, Journal of Luminescence, 128 (2008) 1348-1352.
[116] I. Avgin, and D. L. Huber, ”Flourescence dynamics in 1D systems with phonon-assisted energy transfer”, Journal of Luminescence, 83-84 (1999) 193-197.
[117] B. Grobelna, “Luminescence based on energy transfer in xerogel doped with Ln2-xTbx(WO4)3”, Journal of Alloys and Compounds, 440 (2007) 265-269.
[118] A. Mayolet, W. Zhang, E. Simoni, J. C. Krupa, and P. Martin, “Investigation in the UVU range of the excitation efficiency of the Tb3+ ion luminescence in Y3(Alx,Gay)5O12 host lattices”, Optical Materials, 4 (1995) 757-769.
[119] K. S. Sohn, J. M. Lee, I. W. Jeon, and H. D. Park, “Combinatorial searching for Tb3+-activated phosphors of high efficiency at vacuum UV excitation”, Journal of The Electrochemical Society, 150 (2003) H182-H185.
[120] Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Green-emitting phosphor of LaAlGe2O7: Tb3+ under near-UV irradiation”, Electrochemical Solid-State Letters, 9 (2006) H74-H77.
[121] C. H. Kam, and S. Buddhudu, “Luminescence and decay behaviour of Tb3+:ZrF4-BaF2-LaF3-YF3-AlF3-NaF optical glasses”, Physica B, 337 (2003) 237-244.
[122] K. S. Sohn, Y. G. Choi, and H. D. Park, “Energy Transfer Between Tb3+ Ions in YAlO3 Host”, Journal of The Electrochemical Society, 147 (2000) 3552-3556.
[123] J. K. Park, C. H. Kim, C. H. Ham, H. D. Park, and S. Y. Choi, “Lumienscence properties of GdOBr: Tb green phosphors”, Electrochemical Solid-State Letters, 6 (2003) H13-H16.
[124] C. E. Bonner Jr., P. M. Mwangi, S. J. Creekmore, L. J. Richardson, S. Stefanos, G. B. Loutts, and B. Walsh, “A spectroscopic and Judd-Oflet analysis of the relaxation dynamics of Tm3+ in the fluorapatites, FAP, S-FAP, and B-FAP”, Optical Materials, 20 (2002) 1-12.