| 研究生: |
陳怡仁 Chan, Yi-Jen |
|---|---|
| 論文名稱: |
小膠質細胞中Id基因之表現 Expression of Id gene family in microglia |
| 指導教授: |
曾淑芬
Tzeng, Shun-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 小膠質細胞 、Id基因 、細胞複製 |
| 外文關鍵詞: | proliferation, microglia, Id gene |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Id (inhibitors of DNA binding)屬於HLH(helix-loop-helix---胺基酸的二級結構)轉錄因子家族中的一員,是細胞分化的負調節者。近來研究報告指出Id不僅能調控細胞分化,也參與細胞增生的調控機制。當中樞神經系統受傷時小膠質細胞會被活化:遷移至受傷處進行細胞複製,並釋放前發炎因子。因此本實驗想探討Id1、Id2與Id3與小膠質細胞活化機制間的關係。
利用老鼠初級小膠質細胞與小鼠的細胞株-BV2,以LPS及FBS處理檢測Id的表現。結果發現FBS可誘導BV2細胞增生,並在轉錄層級調控Id的表現:Id mRNA及蛋白質的表現同時被FBS誘導而增加。另一方面,LPS處理也具有誘導初級小膠質細胞生長的能力,並伴隨此Id蛋白質表現量的上升。配合Id antisense轉殖抑制了Id蛋白質表現與小膠質細胞生長的結果,證明Id具有促進小膠質細胞增生的能力。
此外,LPS處理老鼠初級小膠質細胞與BV2細胞,皆可促進其TNF-α的分泌。此時Id在BV2細胞中表現降低,卻在初級小膠質細胞中上升。Id antisense轉殖可抑制BV2細胞TNF-α的分泌,但對初級小膠質細胞TNF-α的分泌並無明顯的影響。由此結果推測:Id與TNF-α的分泌並無直接關聯,但可透過調控細胞生長而影響。最後實驗也發現FBS與LPS可調控Id蛋白質在BV2細胞與初級小膠質細胞內的分佈,使其進入細胞核。總括來說,本實驗證實Id可受FBS及LPS誘導上升,進入細胞核並促進小膠質細胞的增生。
The central nerve system (CNS) injury leads to a complex response including neural cell death, astroglial/microglial activation, axonal degeneration, and demyelination. Microglia stay at the resting stage in normal CNS, and are activated in response to proinflammatory cytokines produced after CNS injury. The molecular mechanism responsible for microglial activation after CNS injury is still unclear. Inhibitors of DNA binding(Id), Id1-Id4 members, have been well known to act as positive regulators for cell proliferation. Previous studies have shown that Id1 and Id3 gene transcripts was upregulated in primary rat microglia treated with TNF-α. In the present study, we used BV2 cells, a mouse microglial cell line, and rat primary microglia to examine the expression of Id1-Id3 proteins. We found that Id1-Id3 transcripts and proteins were highly increased by serum in BV2 cells that were initially starved in serum-free medium for 48 h. The levels of Id1-Id3 transcripts and proteins were increased in a dose-dependent manner. Antisense transfection of Id2 and Id3 but not Id1 inhibited the poliferation of BV2 cells. Interestingly, Id1-3 were downregulated in BV2 cells treated with lipoposaccharide(LPS), which induces BV2 activation, but not their proliferation.
In consistent with previous studies, treatment of primary rat microglia with LPS also caused an increase in these Id protein expression , TNF-α secretion and cell proliferation. Antisense transfection of Id1 and Id2 inhibited the poliferation of primary rat microglia, but none of one inhibits the TNF-α secretion. Indeed, these findings suggest that the Id gene family may plays an important role in microglial activation.
Alani R.M., Hasskarl J., Grace M., Hernandez M.C., Israel M.A. and Munger K. (1999) Proc. Natl. Acad. Sci. USA. 96, 9637-9641.
Aronica E., Vandeputte D.A., van Vliet E.A., Lopes da Silva F.H., Troost D. and Gorter J.A. (2001) Expression of Id proteins increases in astrocytes in hippocampus of epileptic rats. Neuroreport 12, 2461-2465.
Atchley W. and Fitch W. (1997) A natural classification of the basic helix-loop- helix class of transcription factors. Proc. Natl. Acad. Sci. USA. 94, 5172–5176.
Atherton G.T, Travers H., Deed R. and Norton J.D. (1996) Regulation of cell differentiation in C2C12 myoblasts by the Id3 helix-loop-helix protein. Cell Growth Differ. 7, 1059-1066.
Banati R.B., Gerhman J., Schubert P. and Kreutzberg G.W. (1993) Cytotoxicity of microglia. Glia 7, 111-118.
Barbcid M. (1995) Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148-155.
Barone M.V., Pepperkok R., Peverali F.A. and Philipson L. (1994) Id Proteins Control Growth Induction in Mammalian Cells. Proc. Natl. Acad. Sci. U.S.A. 91, 4985-4988.
Barron K.D. (1995) The microglial cell. A historical review. J Neurol. Sci. 134, 57–68.
Benezra R., Davis R.L., Lockshon D., Turner D.L. and Weintraub H. (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59.
Berben G., Legrain M., Gilliquet V. and Hilger F. (1990) The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast 6, 451–454.
Blasi E., Mazzolla R. and Bistoni F. (1991) Microglia cell-mediated anti-candia activity: temperature, ions, protein kinase C as crucial elements. J. Neuroimmunol. 34, 53-60.
Boje K.M. and Arora P.K. (1992) Microglial-produced nitric oxide and reactive nitrogenoxides mediate neuronal cell death. Brain Res. 587, 250–256.
Chang R.C., Chen W., Hudson P., Wilson B., Han D.S. and Hong J.S. (2001) Neuronsreduce glial responses to lipopolysaccharide (LPS) and prevent injury of microglialcells from over-activation by LPS. J Neurochem. 76, 1042–1049.
Chang R.C., Hudson P., Wilson B., Liu B., Abel H., Hemperly J. and Hong J.S. (2000) Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. Brain Res. Mol. Brain Res. 81, 197–201.
Chao C.C., Hu S., Molitor T.W., Shaskan E.G. and Peterson P.K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149, 2736–2741.
Chaudhary J., Johnson J., Kim G. and Skinner M.K. (2001) Hormonal regulation and differential actions of the helix-loop-helix transcriptional inhibitors of differentiation (Id1, Id2, Id3, and Id4) in Sertoli Cells. Endo. 142, 1727-1736.
Cuadros M.A. and Navascues J. (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol. 56, 173–189.
Deed R.W., Armitage S. and Norton J.D. (1996) Nuclear localization and regulation of Id protein through an E protein-mediated chaperone mechanism J. Biol. Chem. 271, 23603-23606
Deed R.W., Bianchi S.M., Atherton G.T., Johnston D., Santibanez-Koref M., Murphy J.J. and Norton J.D. (1993) An immediate early human gene encodes an Id-like helix-loop-helix protein and is regulated by protein kinase C activation in diverse cell types. Oncogene 8, 599-607.
Dynlacht B.D., Flores O., Lees J.A. and Harlow E. (1994) Differential regulation of E2F trans-activation by cyclin/cdk2 complexes. Genes Dev. 8, 1772-1786.
Ellis H.M., Spann D.R. and Posakony J.W. (1990) Extramacrochaetae, anegative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61, 27-38.
Ellmeire W. and Weith A. (1995) Expression of the helix-loop-helix gene Id3 during murine embryonic development. Dev. Dyn. 203, 163-173.
Ephrussi A., Church G.M., Tonegawa S. and Gilbert W. (1985) B-lineage-specific interactions of an immunoglobulin enhancer with cellular factors invivo. Science 227, 134–140.
Farah M.H., Olson J.M., Sucic H.B., Hume R.I., Tapscott S.J. and Turner D.L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693-702.
Gao H.M., Jiang J., Wilson B., Zhang W.Q., Hong J.S. and Liu B. (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem. 81, 1285–1297.
Garrell J.and Modolell J. (1990) The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell 61, 39-48.
Giulian D. (1993) Reactive glia as rivals in regulating neuronal survival. Glia 7, 102-110.
Giulian D. (1990) Microglia, cytokines, and cytotoxins: modulators of cellular responses after injury to central nervous system. J. Immunol. Immunopharmacol. 10, 15-21.
Giulian D., Young D.G., Woodward J., Brown D.C. and Lachman L.B. (1988) Interleukin-1 is an astroglia growth factor in the developing brain. J. Neurosci. 8, 709-714.
Halevy O., Novitch B.G., Spicer D.B., Skapek S.X., Rhee J., Hannon G.J., Beach D. and Lassar A.B. (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018-1021.
Hamamori Y., Wu H.Y., Sartorelli V. and Kedes L. (1997) The basicdomain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol. Cell. Biol. 17, 6563–6573.
Hara E., Yamaguchi T., Nojima H., Ide T., Campisi J., Okayama H. and Oda K. (1994) Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem. 269, 2139-2145.
Harper J.W. and Elledge S.J. (1995) p53-independent expression of p21Cip1in muscle and other terminally differentiating cells. Science 267, 1024,1027.
Hauben E. and Schwartz M. (2003) Therapeutic vaccination for spinal cordinjury: helping the body to cure itself. Trends Pharmacol. Science 24, 7-12.
Hengst L. and Reed S.I. (1996) Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861-1864.
Hoffmann I., Clarke P.R., Marcote M.F., Karsenti E. and Draetta G. (1993) Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53-63.
Hoshizaki D., Hill J. and Henry S. (1990) The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J. Biol. Chem. 265, 3320–3328.
Hsu H.Y. and Wen M.H. (2002) Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J. Biol. Chem. 277, 22131-22139.
Iavarone A., Garg P., Lasorella A., Hsu J. and Israel M.A. (1994) The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8, 1270-1284.
Israel M.A., Hernandez M.C., Florio M., Andres Barquin P.J., Mantani A., Carter J.H. and Julin C.M. (1999) Id gene expression as a key mediator of tumor cell biology. Cancer Res. 59, 1726-1730.
Jen Y.K, Manova K. and Benezra R. (1997) Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92-106.
King L.Y., Mcmillian M.K., Maronport R. and Hong J.S. (1996) Protein tyrosine kinase inhibitors suppress the production of nitric oxide in mix glia, microglia-enriched or astrocyte-enriched cultures. Brain Res. 729, 102-109.
Koguchi K., Nakatsuji Y., Okuno T., Sawada M. and Sakoda S. (2003) Microglia cell cycle-associated proteins control microglia proliferation in vivo and in vitro and are regulated by GM-CSF and density-dependent inhibition. J. Neuroscience Research 74, 898-905.
Lal M.A., Brismar H., Eklof A.C. and Aperia A. (2002) Role of oxidative stress in advanced glycation end product-induced mesangial cell activation Kidney Int. 61, 2006-2014.
Langlands K., Yin X., Anand G. and Prochownik E. (1997) Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J. Biol. Chem. 272, 19785-19793.
Lasirella A., Uo T. and Iavarone A. (2001) Id proteins at the cross-road of development and cancer. Oncogene 20, 8326-8333.
Lasorella A., Noseda M., Beyna M., Yokota Y. and Iavarone A. (2002) Id2 is a retinoblastoma protein target and mediates signaling by Myc oncoproteins. Nature 407, 592-598.
Lasorella A., Iavarone A . and Israel M.A. (1996) Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol. 16, 2570-2578.
Lee J.E., Hollenberg S.M., Snider L., Turner D.L., Lipnick N. and Weintraub H. (1995) Conversion of Xenopus ectoderm into neurons by neuroD, a basic helix-loop-helix protein. Science 268, 836–844.
Liu B. and Hong J.S. (2003) Role of microglia in inflammation-mediated neurodegenerative disease: mechanism and strategies for therapeutic intervention. J. Phar. Exp. Ther. 304, 1-7.
Liu B., Gao H.M., Mandavilli B., Wang J.Y. and Hong J.S. (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J. Neurochem. 77, 182-189.
Lyden D., Young A., Zagzag D., Yan W., Gerald W., O’Reilly R., Bader B., Hynes R., Zhuang Y., Manova K. and Benezra R. (1999) Id1 and Id3 arerequired for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401, 670–677.
Martinsen B.J. and Bronner-Fraser M. (1998) Neural crest specification regulated by the helix-loop-helix repressor Id2. Science. 281, 988-991.
Massari M.E. and Murre C. (2000) Helix-loop-helix proteins:Regulators of transcription in eukaryotic organisms. Mol. Cell. Biol. 20, 429-440.
McGeer P.L., Itagaki S., Boyes B.E. and McGeer E.G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291.
McGuire S.O., Ling Z.D., Lipton J.W., Sortwell C.E., Collier T.J. and Carvey P.M. (2001) Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp. Neurol. 169, 219–230.
Mendenhall M.D. and Hodge A.E. (1998) Regulation of cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1191-1243.
Morgan D.O. (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell. Dev. Biol. 13, 261-291.
Morino T., Ogata T., Horiuchi H., Takeba J., Okumura H., Miyazaki T. and Yamamoto H. (2003) Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury. Neuroscience Research 46, 309-318.
Mueller C., Baudler S., Welzel H., Bohm M. and Nickening G. (2002) Identification of a novel redox-sensitive gene, Id3, which mediates angiotensin II-induced cell growth. Circulation 21, 2423-2428.
Murre C., Mccaw P.S., Vaessin H., Caudy M., Jan L.Y., Jan Y.N., Cabrera C.V., Buskin J.N., Hauschka S.D., Lassar A.B., Weintraub H. and Baltimore D. (1989) Interactions between heterologous helix-loop-helix pro-teins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–544.
Nelsen B. and Sen R. (1992) Regulation of immunoglobulin gene transcription. Int. Rev. Cytol. 133, 121–149.
Neuman T., Keen A., Zuber M.X., Kristjansson G.I., Gruss P. and Nornes H.O. (1993) Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev. Biol. 160, 186-195.
Neumann H. (2001) Control of glial immune function by neurons. Glia 36,191-199.
Nigg E.A. (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17, 471-480.
Norton J.D. (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci. 113, 3897-3905.
Norton J.D., Deed R.W., Craggs G. and Sablitzky F. (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58-65.
Ohtani N., Zebedee Z., Huot T.J., Stinson J.A., Sugimoto M., Ohashi Y., Sharrocks A.D., Peters G. and Hara E. (2001) Opposing effects of Ets and Id proteins on p16 INK4a expression during cellular senescence. Nature 409, 1067-1070.
Pagliuca A., Gallo P., De Luca P. and Lania L. (2000) Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors’ promoter activity and nefative affect cell growth. Cancer Res. 60, 1376-1382.
Pan L., Sato S., Frederick J.P., Sun X.H. and Zhuang Y. (1999) Impaired immune response and B cell proliferation in mice lacking Id3 gene. Mol. Cell Biol. 19, 5969-5980.
Parker S.B., Eichele G., Zhang P., Rawls A., Sands A.T., Bradley A., Olson E.N., Harper J.W. and Elledge S.J. (1995) p53-independent expression of p21 in muscle and other terminally differentiating cells. Science 267, 1024-1027.
Peeper D.S., Parker L.L., Ewen M.E., Toebes M., Hall F.L., Xu M., Zantema A., van der Eb E.F. and Piwnica-Worms H. (1993) A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12, 1947-1954.
Pines J. (1994) Protein kinases and cell cycle control. Cell Biol. 5, 399-408.
Polsky D., Young A.Z., Busam K.J. and Alani R.M. (2001) The Transcriptional Repressor of p16/Ink4a, Id1, Is Up-Regulated in Early Melanomas. Cancer Res. 61, 6008-6011.
Porcher C., Swat W., Rockwell K., Fujiwara Y., Alt F. and Orkin S. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development ofall hematopoietic lineages. Cell 86, 47–57.
Povlishock J.T., Jenkins L.W. (1995) Are the pathological changesevoked by traumatic brain injury immediate and irreversible? Brain Pathol. 5, 415–426.
Prabhu S., Ignatova A., Park S.T. and Sun X.H. (1997) Regulation of expression of the cyclin dependent kinase inhibitor p21 by E2A and ID helix-loop-helix proteins. EMBO. J. 18, 6307-6318.
Qin L., Liu Y.X., Cooper C.L., Liu B., Wilson B. and Hong J.S. (2002) Microglia enhance -amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 83, 973-983.
Righi M.L., Mori G., Libero D., Sironi M., Biondi A., Mantovani A., Donini S.D. and
Castagnoli P.R. (1989) Monokine production by microglial cell clones. Eur. J. Immunol. 19, 1443-.
Rogers J., Luber-Narod J., Styren S.D. and Civin W.H. (1988) Expression of immunesystem-associated antigens by cells of the human central nervous system: relationshipto the pathology of Alzheimer’s disease. Neurobiol Aging 9, 339–349.
Rosenberger J., Petrovics G. and Buzas B. (2001) Oxidative stress induce proorphanin FQ and Proenkephalin gene expression in astrocytes through p38 and ERK-MAP kinases and NF-kappaB. J. Neurochem. 79, 35-44.
Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Sherr C.J. (1994) Mammalian G1 cyclins. Cell 73, 1059-1065.
Sikder H.A., Devlin M.K., Dunlop S., Ryu B. and Alani R.M. (2003) Id proteins in cell growth and tumorigenesis. Cancer Cell 3, 525-530.
Spicer D., Rhee J., Cheung W. and Lassar A. (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein twist. Science 272, 1476–1480.
Stals H. and Inzé D. (2001) When plant cells decide to divide. Trends in Plant Science 6, 359-364.
Staudt L. and Lenardo M. (1991) Immunoglobulin gene transcription. Annu. Rev. Immunol. 9, 373–398.
Streilein J.W. (1993) Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr. Opin. Immunol. 5,428–432.
Streilein J.W. (1995) Unraveling immune privilege. Science 270,1158–1159.
Tzeng S.F. (2003) Inhibitors of DNA biding in neural cell proliferation and differentiation. Neurochemical Research 28, 45-52.
Tzeng S.F., Bresnahan J.C., Beattie M.S. and de Vellis J. (2001) Upregulation of the HLH Id gene family in neural progenitors and glia cells of the rat spinal cord fpllowing contusion injury. J. Neurosci. Res. 66, 1161-1172.
Tzeng S.F, Khan M., Liva S. and de Vellis J. (1999) Tumor necrosis factor-alpha regulation of the Id gene family in astrogcytes and microglia during CNS inflammatory injury. Glia 26, 139-152.
Tzeng S.F. and de Vellis J. (1998) Id1, Id2, and Id3 gene expression in neural cells during development. Glia 24, 372-381.
Vaca K. and Wendt E. (1992) Divergent effects of astroglia and microglia secretion on neuronal growth and survival. Exp. Neurol. 118, 62-72.
van den Heuvel S. and Harlow E. (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050-2054.
Wilson J.W., Deed R.W., Inoue T., Balzi M., Becciolini A., Faraoni P., Potten C.S. and Norton J.D. (2001) Expression of Id helix-loop-helix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index. Cancer Research 61, 8803-8810.
Whelan J., Cordle S.R., Henderson E., Weil P.A. and Stein R. (1990) Identification of a pancreatic b-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific gene expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol. Cell. Biol. 10, 1564–1572.
Yokota Y., Mansouri A., Mori S., Sugawara S., Adachi S., Nishikawa S. and Gruss P. (1999) Development of peripheral lymphoid organs and naturalkiller cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706.
Yoles E. and Schwartz M. (1998) Degeneration of spared axons followingpartial white matter lesion: implications for optic nerve neuropathies. Exp Neurol. 153, 1–7.
Younger-Shepherd S., Vaessin H., Bier E., Jan L.Y. and Jan Y.N. (1992) Deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell 70, 911-922.
Zebedee Z. and Hara E. (2001) Id proteins in cell cycle control and cellular senescence. Oncogene 20, 8317-8325.