簡易檢索 / 詳目顯示

研究生: 陳和謙
Chen, Ho-Chien
論文名稱: 氮化鋁銦鎵金半金光檢測器與氮化銦鎵/氮化鎵多重量子井光元件之研究
The study of AlInGaN MSM photodetectors and InGaN/GaN MQW optical devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 83
中文關鍵詞: 回火光檢測器四元氮化鋁銦鎵金半金發光二極體多重量子井蕭特基
外文關鍵詞: LEDs, MQW, Schottky, annealing, photodetectors, quaternary, MSM, AlInGaN
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在本篇論文中,我們製作出以氮化鋁銦鎵四元材料當作主動層之金屬-半導體-金屬結構光檢測器。首先,我們將對所製作之元件去作回火的處理,藉此來探討回火對元件特性之影響。我們可以發現到元件在550℃氧氣環境下回火3分鐘後,偏壓在5伏特時,元件的暗電流可以從原先的3.39×10-6安培降低到25.4×10-12安培。550℃回火過的光檢測器在光暗電流比及響應的拒斥比上也都較未回火處理的來得更大。在1伏特的外加偏壓下,其響應的拒斥比可達4.23×103。
    此外,我們也利用PECVD沈積一層二氧化矽在主動層上製作了金屬-絕緣層-半導體結構光檢測器。藉著加入一層二氧化矽絕緣層,我們也可以有效地來降低元件的漏電流。而且隨著絕緣層厚度的增加,漏電流也可獲得較大的抑制。在偏壓5伏特時,元件的漏電流大約可以被降低有4個數量級。最後,我們也製作了氮化銦鎵/氮化鎵多重量子井結構的雙工元件。該元件在順向偏壓操作下可以作為一發光二極體;而在逆向偏壓操作下則可當光檢測器使用。在順向偏壓操作下,尺寸較大的元件可以有比較高的電激發光強度及光輸出強度;但在逆向偏壓操作下,尺寸較小的元件則有較低的漏電流與較高的光暗電流比。

    Abstract
    In this thesis, we fabricated Metal-Semiconductor-Metal photodetectors with quaternary AlInGaN as the active layer. At first, we will investigate the effect of thermal annealing on the fabricated devices by the annealing treatment. With a 5V bias, it was found that the dark current of device could be reduced from 3.39×10-6A to 25.4×10-12A by annealing at 550℃ for 3 minutes under O2 ambient. The photo-dark contrast ratio and the rejection ratio in spectral response of 550℃ annealed MSM photodetector were both larger than the as-deposited one. The rejection ratio in spectral response could reach 4.23×103 for 550℃ annealed MSM photodetector.
    In addition, we also fabricated Metal-Insulator-Semiconductor with a PECVD-deposited SiO2 layer. The leakage current of device could be effectively suppressed by inserting an insulating layer beneath the electrodes. With a 5V bias, the device leakage current could be decreased for four orders. Finally, we also fabricated the dual-functional devices based on InGaN/GaN Muti-Quantum Well structure. The optoelectronics devices exhibiting photodetector properties in reverse bias, while at the same time preserving the distinct identities of LED under forward bias. Under the forward operation, big sized device performs a higher Electroluminence peak and light output intensity. However, small sized device has the smaller leakage current and a higher photo-dark contrast ratio.

    Contents page 摘要……..………………………………………………………………………… I English abstract ……………………………………………………………… III 誌謝..……………………………………………………………………………… V Contents ………………………………………………………………………… VII Figure captions ………………………………………………………………… X Table captions ………………………………………………………………… XIII Chapter 1: Introduction …………………………………………………………1 1-1 Background…………………………………………………………………1 1-2 Program……………………………………………………………………4 Chapter 2: Theorem and Measurement System…………………………………10 2-1 Theorem of Schottky contact …………………………………………10 2-1.1 Contact in Metal-Semiconductor (M-S)…………………………10 2-1.2 Mechanism of current transport in M-S junction……………11 2-2 Semiconductor photodetector …………………………………………14 2-2.1 Principle of operation……………………………………………14 2-2.2 Metal-Semiconductor-Metal (MSM) photodetector ……………14 2-3 Quantum Efficiency and Responsivity ………………………………16 2-4 Measurement Instruments ………………………………………………17 Chapter 3: AlInGaN Metal-Semiconductor-Metal(MSM) Photodetectors …26 3-1 Introduction………………………………………………………………26 3-2 Fabrication process of the device structure ……………………27 3-2.1 The growth of quaternary AlInGaN ……………………………27 3-2.2 The fabrication of MSM and MIS photodetectors ……………28 3-2.3 The measurement of fabricated MSM photodetectors…………30 3-3 The characteristics of fabricated devices ………………………31 3-3.1 Characteristics of AlInGaN MSM photodetectors ……………31 3-3.2 Characteristics of AlInGaN MIS photodetectors ……………33 3-4 Summary ……………………………………………………………………36 3-4.1 Summary of AlInGaN MSM photodetectors ………………………36 3-4.2 Summary of AlInGaN MIS photodetectors ………………………36 Chapter 4: InGaN/GaN Multi-Quantum Well (MQW) Optical Devices………50 4-1 Introduction………………………………………………………………50 4-2 Fabrication process of the device structure ……………………51 4-2.1 The growth of InGaN/GaN MQW structure ………………………51 4-2.2 The fabrication of InGaN/GaN MQW devices……………………52 4-2.3 The measurement of InGaN/GaN MQW devices……………………55 4-3 The characteristics of fabricated devices ………………………57 4-3.1 Material analysis and I-V Characteristics …………………57 4-3.2 Optical Characteristics………….………………………………59 4-3.3 Response and I-V Characteristics………………………………61 4-4 Summary ……………………………………………………………………62 Chapter 5: Conclusions and Future Works……………………………………81 5-1 Conclusions ………………………………………………………………81 5-2 Future Works………………………………………………………………83

    Reference
    Chapter 1
    [1] S. N. Morhammad, A. Salvador, and H. Morkoc, “Emerging gallium nitride
    based devices,” proc. of IEEE Vol. 83 10, 1306-1355 (1995)
    [2] J. F. Schetzina, in International Symposium on Blue Lasers and Light
    Emitting Diodes, Chiba University, Japan, March 5-7, 74-79 (1996)
    [3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, ”
    Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor
    device technologies,” J. Appl. Phys. Vol.76 3, 1363-1398 (1994)
    [4] I. Akasaki and H. Amano, International Symposium on Blue Lasers and Light
    Emitting Diodes, Chiba University, Japan, March 5-7, 11-16 (1996)
    [5] Bernard Gil, Group III Nitride Semiconductor Compounds(Oxford, New York,
    1998)
    [6] E Monroy et al., “Wide-bandgap semiconductor ultraviolet photodetectors,”
    Semicond. Sci. Technol. Vol. 18 4, R33–R51 (2003)
    [7] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen,
    Z. Z. Chen and Y. D. Zheng, “Metal–semiconductor–metal GaN ultraviolet
    photodetectors on Si(111),” Appl. Phys. Lett. Vol. 77 3, 444-446 (2000)
    [8] Q. Chen, M.A. Khan, C.J. Sun, J.W. Yang, ” Visible-blind ultraviolet
    photodetectors based on GaN p-n junctions,” IEEE Electron. Lett. Vol. 31
    20, 1781-1782 (1995)
    [9] M.L. Lee, J.K. Sheu, W.C. Lai, S.J. Chang, Y.K. Su, M.G. Chen, C.J. Kao,
    G.C. Chi, J.M. Tsai,” GaN Schottky barrier photodetectors with a low-
    temperature GaN cap layer,” Appl. Phys. Lett. 82 17, 2913-2915 (2003)
    [10] D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, M. Razeghi, “AlxGa1 –
    xN (0≦x≦1) ultraviolet photodetectors grown on sapphire by metal-
    organic chemical-vapor deposition,” Appl. Phys. Lett. Vol. 70 8, 949-
    951 (1997)
    [11] E. Monroy, F. Calle, J.L. Pau, E. Munoz, F. Omnes, ”Low-noise metal-
    insulator-semiconductor UV photodiodes based on GaN,” IEEE Electron.
    Lett. Vol. 36 25, 2096-2098 (2000)
    [12] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz,
    M. Razeghi,” High-speed, low-noise metal–semiconductor–metal
    ultraviolet photodetectors based on GaN ,” Appl. Phys. Lett. 74 5, 762-
    764 (1999)
    [13] Jianliang Li et al., ”Very fast metal semiconductor-metal ultraviolet
    photodetectors on GaN with submicron finger width,” IEEE Photonics
    Technol. Lett. Vol. 15 8, 1141-1146 (2003)
    [14] J.C. Carrano, T. Li, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, J.C.
    Campbell, ”Comprehensive characterization of metal-semiconductor- metal
    ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl.
    Phys. Vol. 83 11, 6148-6160 (1998)
    [15] D. Kapolnek, X.H. Wu, B. Heying, S. Keller, B.P. Keller, U.K. Mishra,
    S.P. DenBaars, J.S. Specka,” Structural evolution in epitaxial
    metalorganic chemical vapor deposition grown GaN films on sapphire ,”
    Appl. Phys. Lett. Vol. 67 11, 1541-1543 (1995)
    [16] A. Chini, J. Wittich, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra,
    “Power and linearity characteristics of GaN MISFETs on sapphire
    substrate,” IEEE Electron. Device Lett. Vol. 25 2, 55-57 (2004)

    Chapter 2
    [1] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts,Clarendon
    Press, Oxford, (1998)
    [2] S. M. Sze, Semiconductor Device Physics and Technology, p.160 (1985)
    [3] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-
    Semiconductor-Metal (MSM) structures”, Solid-State Electron. Vol. 14,
    1209 (1971)
    [4] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and their
    Applications, p.20 ( New York, 1984)
    [5] E Monroy, F Omn`es and F Calle , “Wide-bandgap semiconductor ultraviolet
    photo- detectors,” Semicond. Sci. Technol. Vol. 18 4, R33–R51 (2003)
    [6] M. Fukuda, “Optical Semiconductor Devices” Wiley Interscience, pp.30-90
    (1999)

    Chapter 3
    [1] J. Han et al., “Control and elimination of cracking of AlGaN using low-
    temperature AlGaN interlayers,” Appl. Phys. Lett. Vol. 78 1, 67-69 (2001)
    [2] F. G. McIntosh, J. C. Roberts, M. E. Aumer, V. A. Joshkin, S. M. Bedair,
    and N. A. El-Masry, MRS Internet J. Nitride Semicond. Res.1, 43 (1996)
    [3] M.Ashif Khan et al., “Lattice and energy band engineering in AlInGaN/GaN
    heterostructures,” Appl. Phys. Lett. Vol. 76 9, 1161-1163 (2000)
    [4] L.C. Chen et al.,” Low-resistance ohmic contacts to p-type GaN achieved
    by the oxidation of Ni/Au films,” J. Appl. Phys.Vol. 86 8, 4491-4497(1999)
    [5] T. Maeda et al., “Effects of NiO on electrical properties of NiAu-based
    ohmic contacts for p-type GaN,” Appl. Phys. Lett. Vol. 75 26, 4145 (1999)
    [6] P. C. Chang et al., ”AlGaN/GaN MSM photodetectors with photo-CVD annealed
    Ni/Au semi-transparent contacts,” Semicond. Sci. Technol. Vol. 19 12,
    1354–1357 (2004)
    [7] P. C. Chang et al., “High UV/visible rejection contrast AlGaN/GaN MIS
    photodetectors,” Thin Solid Films Vol. 498 1-2, 133-136 (2006)
    [8] P. C. Chang et al., “InGaN/GaN Multi-Quantum Well Metal-Insulator-
    Semiconductor Photodetectors with Photo-CVD SiO2 Layers,” Jpn. J. Appl.
    Phys. Vol. 43 4B, 2008-2010 (2004)

    Chapter 4
    [1] E. Muñoz et al., “III nitrides and UV detection,” J. Phys. Condens.
    Matter. Vol. 13 32, 7115-7137 (2001)
    [2] J. C. Roberts et al., “Ultraviolet-Visible Metal-Semiconductor-Metal
    Photodetectors Fabricated from InxGa1-xN(0≦x≦0.13),” J. Electron.Mater.
    Vol. 31 1, 94–99 (2002)
    [3] C. Rivera et al., “Novel photodetectors based on InGaN/GaN multiple
    quantum wells,” Phys. Stat. Sol. (a) Vol. 201 12, 2658–2662 (2004)
    [4] S. M. Sze, Physics of Semiconductor Devices 2nd. , Wiley, (1981)
    [5] S. Strite et al., “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B
    Vol. 10, 1237-1266 (1992)
    [6] F. A. Reboredo et al., “Novel Defect Complexes and Their Role in the p-
    Type Doping of GaN,” Phys. Rev. Lett. Vol. 82 9, 1887-1890 (1999)
    [7] X. Guo et al., “Efficiency of GaN/InGaN light-emitting diodes with
    interdigitated mesa geometry,” Appl. Phys. Lett. Vol.79 13, 1936-1938
    (2001)
    [8] S. Nakamura et al., “InGaN/GaN/AlGaN-Based LEDs and Laser Diodes,” MRS
    Internet J. Nitride Semicond. Res. Vol. 4S1, G1.1 (1999)
    [9] C. Pernot et al., “Investigation of the Leakage Current in GaN P-N
    Junctions” Jpn. J. Appl. Phys. Part 2 Vol. 37 10B, L1202-1204 (1998)
    [10] S. J. Pearton et al., ”GaN: Processing, defects, and devices,” J. Appl.
    Phys. Vol. 86 1, 1-78 (1999)
    [11] Y. Narukawa et al., “Role of self-formed InGaN quantum dots for exciton
    localization in the purple laser diode emitting at 420 nm,” Appl. Phys.
    Lett. Vol. 70 8, 981-983 (1997)
    [12] D. A. Miller et al., “Relation between electroabsorption in bulk semi-
    conductors and in quantum wells: The quantum-confined Franz-Keldysh
    effect,” Phys. Rev. B Vol.33 10, 6976-6982 (1986)
    [13] C. Rivera et al., “Photoresponse of (In,Ga)N–GaN Multiple-Quantum- Well
    Structures in the Visible and UVA Ranges,” IEEE J. Quantum Electron.Vol.
    42 1, 51-58 (2006)

    下載圖示 校內:2009-06-26公開
    校外:2011-06-26公開
    QR CODE