| 研究生: |
詹詠彰 Chan, Yung-Chang |
|---|---|
| 論文名稱: |
離岸風機基礎動態響應之初步研究 The Preliminary Study of Dynamic Responses of Offshore Wind Turbine Foundations |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 樁土互制 、阻抗函數 、轉換函數 、群樁效應 |
| 外文關鍵詞: | soil-pile interaction, impedance function, transfer function, group effect |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應台灣風場颱風、地震等自然營力活躍之條件,凡從事海上設施之開發,均須歸納一套完整而嚴謹的動力分析暨驗證程序,以預測構造物基礎於擬風波流、地震力作用下之動態響應供設計參考,確保離岸設施之服務品質。本文以海上風機樁基礎為研究主體,利用套裝軟體DynaN v3.0以及DynaPile v2016,探討風機基礎模態分析模組化之可能,前者針對Novak軟弱夾心模型,克服介面反射問題,進行樁土互制行為之模擬;後者基於諧和邊界矩陣,利用阻抗函數與轉換函數的概念,分別演算樁(群)於輸入簡諧振盪或不規則基盤加速度,各自由度間之移(轉)動量以及振動歷時。本文規劃若干模型、進行參數研究,檢討程式之靈敏度,首先觀察單樁系統其動態勁度與響應,在不同土壤剖面、長徑比、支承條件以及質量塊大小的調動下,於頻域上之輸出趨勢,並提供基樁載重試驗之模擬以 資對照,以及群樁規模與間距的改變對樁間互制行為的影響,以期符合前人之研究、驗證程式之邏輯。最後,擇一實際風場為案例,模擬台海現場粉質砂土環境,進行基礎動力分析,並比較互層土壤模型、海床淘刷等複雜條件下,各理論與假設輸出之可靠度,並操作上部結構耦合基礎系統之響應分析,確保多振源作用下,風機塔架自然頻率落在安全的範圍內,以及輸入地震力時,基礎之折減效益,提供日後結構耐震設計與勁度衰減研究之參考參數。期望有關之振動分析模組研究,俾利推動我國離岸風機水下結構關鍵技術之開發。
Not like the steady environment of European wind farms, in order to overcome disasters such as typhoon and earthquake, the construction of Taiwanese offshore wind turbines requires rigorous and complete analyses of foundation dynamic responses. The objective of this paper is to modularize the calculation of pile stiffness and damping in all degrees of freedom (i.e., vertical, sliding, rocking, coupling or torsional vibration) using DynaN v3.0 and DynaPile v2016. One is based on the Improved Novak’s Method which a non-reflective boundary is introduced to obtain a more realistic model that accounts for non-linear effects; the other one is based on the Consistent Boundary Method including the techniques of Soil-Structure Interaction and transfer functions that are related to the computation of kinematic responses excited by seismic loading. Following is the parametric study conducted by several models with variation of soil profiles, pile rigidity, slenderness, boundary conditions and different layouts for pile groups. Once the modeling of dynamic behavior as well as group effect of piles meets the results determined by other experiments or numerical researches on frequency domain, both the charts and tables produced by programs are confirmed. Besides, the case study is necessary. Considering a 3.6 MW wind turbine located on Fuhai offshore windfarm, Changhua City, the simplified model set according to design data and borehole reports has been analyzed. Dynamic responses due to periodic wave load or real seismic events could be estimated by programs instead of in-situ measurements and provide the information for improvement of wind turbine foundations more accessible.
1. 內政部營建署 (2011),「建築物耐震設計規範及解說」,內政部建築研究所,民國一百年,台北。
2. 陳正興 (2004),「土壤結構互制地震分析之獨立運跑(1/2)」,行政院原子能委員會委託研究計畫研究報告(計畫編號:932001 INER004),中華民國大地工程學會,台北。
3. 張景德,「單樁基礎的動態行為研究」,國立中央大學土木工程研究所,碩士論文。
4. 張智鈞 (2010),「群樁效應之三維數值分析」,國立中央大學土木工程研究所,碩士論文。
5. 許博凱 (2015),「基礎勁度對離岸風機支撐結構行為影響研究」,國立成功大學水利及海洋工程研究所,碩士論文。
6. 張書瑜 (2016),「p-y曲線應用砂土層離岸風機群樁基礎之行為分析」,國立成功大學土木工程研究所,碩士論文。
7. 曾韋禎 (2018),「淘刷對離岸風機大口徑單樁基礎整體結構動態反應之影響」,國立成功大學土木工程研究所,博士論文。
8. Arany, L., Bhattacharya, S., Adhikari, S., Hogan, S.J., and Macdonald, J.H.G. (2015). “An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models.” Soil Dynamics and Earthquake Engineering, Vol. 74, No. 5, pp. 40-45.
9. Arnay, L., Bhattacharya, S., Macdonald, J., and Hogan, S.J. (2017). “Design of monopiles for offshore wind turbines in 10 steps.” Journal of Soil Dynamics and Earthquake Engineering, Vol. 92, pp. 126-152.
10. Dobry, R., and Gazetas, G. (1988). “Simple method for dynamic stiffness and damping of floating pile groups.” Geotechnique, Vol. 38, No. 4, pp. 557-574.
11. Das, B.M. (Ed.) (1993). “Principles of soil dynamics.” Boston: PWS-KENT Publishing Company.
12. Dong, X.H. (2016). “Theoretical analysis of wind turbine tower-nacelle axial vibration based on the mechanical impedance method.” Journal of Applied Science and Engineering, Vol. 19, No. 1, pp. 53-64.
13. El Marsafawi, H., Han, Y.C., and Novak, M. (1992). “Dynamic experiments on two pile groups.” Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 4, pp. 576-592.
14. Gazetas, G. (1984). “Seismic response of end-bearing single piles.” Soil Dynamics and Earthquake Engineering, Vol. 3, No. 2, pp. 82-93.
15. Gazetas, G., Fan, K., Kaynia, A., and Kausel, E. (1991). “Dynamic interacion factors for floating pile groups.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 10, pp. 1531-1548.
16. Gazetas, G., and Makris, N. (1991). “Dynamic pile-soil-pile interaction. Part I: analysis of axial vibration.” Earthquake Engineering and Structural Dynamics, Vol. 20, No. 2, pp. 115-132.
17. Gazetas, G., Fan, K., Tazoh, T., Shimizu, K., Kavvadas, M., Makris, N., et al. (1992). “Seismic pile-group—structure interaction.” In: Prakash, S. (Ed.) Piles under dynamic loads. New York: American Society of Civil Engineering, pp. 56-93.
18. Gazetas, G., Fan, K., and Kaynia, A.M. (1993). “Dynamic response of pile groups with different configurations.” Soil Dynamics and Earthquake Engineering, Vol. 12, No. 4, pp. 239-257.
19. Gupta, S., Lin, T.W., Penzien, J., and Yeh, C.S. (1980). “Hybrid-modeling of soil structure interaction.” Report No. EERC 80-09, Earthquake Engineering Research Center, University of California, Berkeley, California, USA.
20. Han, Y.C., and Novak, M. (1988). “Dynamic behavior of single piles under strong harmonic excitation.” Canadian Geotechnical Journal, Vol. 25, No. 3, pp. 523-534.
21. Han, Y.C., and Sabin, G. (1995). “Impedances for radially inhomogeneous soil media with non-reflective boundary.” Journal of Engineering Mechanics, ASCE, Vol. 121, No. 9, pp. 939-947.
22. Houlsby, G.T., Ibsen, L.B., and Bryne, B.W. (2005). “Suction caissons for wind turbines.” Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, Sept. 19-21, Perth, Australia, pp. 75-93.
23. Haigh, S.K. (2014). “Foundations for offshore wind turbines.” Proceedings: 8th International Conference on Physical Modelling in Geotechnics, January 14-17, 2014 Perth, Western Australia, Vol. 1, pp. 153-159.
24. Kausel, E., and Roesset, J.M. (1981). “Stiffness matrices for layered soils.” Bulletin of the Seismological Society of America, Vol. 71, No. 6, pp. 1743-1761.
25. Kaynia, A.M. (1982). “Dynamic stiffness and seismic response of pile groups.” Doctoral Dissertation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambrige, Massachusetts, USA.
26. Kavvadas, M., and Gazetas, G. (1993). “Kinematic seismic response and bending of free-head piles in layered soil.” Geotechnique, Vol. 43, No. 2, pp. 207-222.
27. Lysmer, J., Utaka, T., Tsai, C.F., and Seed, H.B. (1975). “FLUSH–a computer program for approximate 3-D analysis of soil-structure interaction problem.” Report EERC-75-30, University of California, Berkeley, California, USA.
28. Latini, C., Zania, V., and Johannesson, B. (2015). “Dynamic stiffness and damping of foundations for jacket structures.” Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, November 1-4, 2015 Christchurch, New Zealand.
29. Novak, M. (1974). “Dynamic stiffness and damping of piles.” Canadian Geotechnical Journal, Vol. 11, No. 4, pp. 574-598.
30. Novak, M., and Sheta, M. (1980). “Approximate approach to contact problems of piles.” Proceedings: ASCE Conference on Dynamic Response of Structures: Experimentation, Obervation, Prediction and Control, January 15-16, Florida, USA, pp. 53-79.
31. Novak, M., and Sheta, M. (1982). “Dynamic response of piles and pile groups.” Research Report, Faculty of Engineering Science, The Unuversity of Western Ontario, London, Ontario, Canada.
32. Novak, M., and El Sharnouby, B. (1983). “Stiffness constants of single piles.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 109, No. 7, pp. 961-974.
33. Novak, M. (1991). “Piles under dynamic loads.” Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991 St. Louis, Missouri, Paper No. SOA14.
34. Poulos, H.G., and Davis, E.H. (1980). “Pile foundations analysis and design.” International Ed., New Jersey: John Wiley and Sons, Inc.
35. Reese, L.C., Wang, S.T., Arrellaga, J.A., and Vasquez, L. (2012). “DynaN–a program for dynamic analysis of both shallow and deep foundations under harmonic, transient and random loading using improved Novak’s method.” User’s Manual, ENSOFT, INC., Austin, Texas, USA.
36. Roesset, J.M. (2013). “Soil structure interaction the early stages.” Journal of Applied Science and Engineering, Vol. 16, No. 1, pp. 1-8.
37. Roesset, J.M., Wang, S.T., Vasquez, L., and Fadaifard H. (2016). “DynaPile–a program for dynamic analysis of pile and drilled shafts under dynamic loading.” Technical Manual, ENSOFT, INC., Austin, Texas, USA.
38. Roesset, J.M., Wang, S.T., Vasquez, L., and Fadaifard H. (2016). “DynaPile–a program for dynamic analysis of pile and drilled shafts under dynamic loading.” User’s Manual, ENSOFT, INC., Austin, Texas, USA.
39. Shamsher, P.F., and Houda, J.M. (2001). “Prediction of lateral dynamic response of single piles embedded in fine soils.” Proceedings: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor W.D. Liam Finn, March 26-31, 2001 San Diego, California, Paper No. 6.50.
40. Shadlou, M., and Bhattacharya, S. (2014). “Dynamic stiffness of pile in a layered continuum.” Geotechnique, Vol. 64, No. 4, pp. 303-319.