簡易檢索 / 詳目顯示

研究生: 古閔中
Goo, Min-Chung
論文名稱: 建立等向隨機及非等向隨機之粗糙表面並計算其輻射性質
Numerically Generating Isotropic and Anisotropic Random Rough Surfaces and Obtaining Their Radiative Properties
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 131
中文關鍵詞: 背向散射雙方向反射密度函數快速傅立葉轉換有限差分時域法隨機粗糙表面
外文關鍵詞: backscatter, bidirectional reflectance density function, fast Fourier transform method, finite difference time domain method, random rough surfaces
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標分為兩部分,其一為產生隨機粗糙表面(random rough surfaces, RRS),其二為建立輻射性質模擬程式,探討前述結構與電磁波的交互作用。隨機粗糙表面產生,採用快速傅立葉轉換(fast Fourier transform, FFT)方法,成功產生具備不同標準差(standard deviation)、相關長度(correlation length)與自相關函數(auto-correlation function, ACF)下之一維、二維等向與二維非等向性隨機粗糙表面;而輻射性質模擬程式是以有限差分時域法(finite difference time domain, FDTD)為理論基礎,其週期邊界則採用修正後的正弦餘弦法(sine-cosine method),以提升運算速度,可成功模擬週期結構與隨機粗糙表面之輻射性質。本文分別模擬一維高斯(Gaussian)與指數(exponential)形式的隨機粗糙表面之雙方向反射密度函數(bidirectional reflectance density function,BRDF),結果顯示,在短波長正向入射時,指數相對於高斯表面反射能量減少,但在長波長正向入射時兩者結果相近。在斜向入射時,指數比高斯表面在入射方向有較明顯的背向散射(backscattering)。

    This work comprises two parts: one is numerically generating random rough surfaces (RRS), and the other is programing codes for their radiative properties.The success of both can facilitate investigating the interrelationship between structure and electromagnetic waves.The generation of RRS was realized with the fast Fourier Transform method.Surfaceof different standard deviations, correlation lengths,and auto-correlation functionswere sussfully generated. Moreover, they include 1D RRS,2D isotropic RRS, and 2D anisotropic RRS. The radiative property simulation is based on the finite difference time domain (FDTD) method. The periodic boundary condition is employedthe modified sine-cosine method to speed up the calculation speed. Obtained radiative properties can reproduce those from published works to confirm the success of both RRS generation and radiative property modeling.
    Next, bidirectional reflectance density function (BRDF) of 1D Gaussian and 1D exponential RRS were obtained with developed programs. At normal incidence of long wavelengths, the BRDF from Gaussian RRS and exponential RRS is about the same. But the BRDF is smaller for exponential RRS than for Gaussian RRS at the normal incidence of short wavelengths. At oblique incidence, the backscattering from exponential RRS becomes significant while that form Gaussial RRS is relatively trivial.

    摘要 i Abstract ii 致謝 iv 表目錄 viii 圖目錄 ix 符號表 xiii 第1章 緒論 1 1.1背景介紹 1 1.2研究目標 7 第2章 隨機粗糙表面 8 2.1基本函數介紹 8 2.2產生隨機粗糙表面 12 2.3隨機粗糙表面程式碼驗證 14 2.3.1一維隨機粗糙表面 14 2.3.2二維隨機粗糙表面 19 第3章 有限差分時域法 26 3.1發展背景 26 3.2基本架構 29 3.3 數值色散與穩定性 35 3.4 材料特性 37 3.5 邊界條件 39 3.5.1吸收邊界層 40 3.5.1.1單軸完美匹配層 40 3.5.1.2離散形式的單軸完美匹配層 45 3.5.1.3以單軸完美匹配層技術對有限差分時域法作修正 47 3.5.2入射場源 61 3.5.2.1激發源的處理方式 61 3.5.3.2入射波空間的配置 62 3.5.2.3入射波與計算空間耦合 65 3.5.2.4總場區與散射場區的配置 69 3.5.3週期性邊界 73 3.6近遠場轉換 79 3.6.1簡介 79 3.6.2一維隨機粗糙表面之近遠場轉換 81 3.6.3二維隨機粗糙表面之近遠場轉換 88 3.6.4光柵之近遠場轉換 93 3.7計算流程 95 第4章 程式碼驗證 97 4.1一維光柵 97 4.2二維光柵 102 4.3一維隨機粗糙表面 105 第5章 結論與未來工作 121 5.1結論 121 5.2未來工作 122 參考文獻 123 自述 131

    1. I. Yamada, K. Takano, M. Hangyo, M. Saito and W. Watanabe, "Terahertz Wire-Grid Polarizers with Micrometer-Pitch Al Gratings," Optics Letters, 34(3), 274-276 (2009).
    2. I. Yamada, K. Fukumi, J. Nishii and M. Saito, "Infrared Wire-Grid Polarizer With Y2O3 Ceramic Substrate," Optics Letters, 35(18), 3111-3113 (2010).
    3. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi and J. Nishii, "Fabrication of a Mid-IR Wire-Grid Polarizer by Direct Imprinting on Chalcogenide Glass," Optics Letters, 36(19), 3882-3884 (2011).
    4. H. H. Lin, C. H. Lee and M. H. Lu, "Dye-Less Color Filter Fabricated by Roll-to-Roll Imprinting for Liquid Crystal Display Applications," Optics Express, 17(15), 12397-12406 (2009).
    5. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park and K. D. Lee, "Color Filter Incorporating a Subwavelength Patterned Grating in Poly Silicon," Optics Express, 16(4), 2374-2380 (2008).
    6. Y. B. Chen and Z. M. Zhang, "Design of Tungsten Complex Gratings for Thermophotovoltaic Radiators," Optics Communications, 269(2), 411-417 (2007).
    7. H. Sai and H. Yugami, "Thermophotovoltaic Generation with Selective Radiators Based on Tungsten Surface Gratings," Applied Physics Letters, 85(16), 3399-3401 (2004).
    8. H. Sai, H. Yugami, Y. Kanamori and K. Hane, "Solar Selective Absorbers Based on Two-Dimensional W Surface Gratings with Submicron Periods For High-Temperature Photothermal Conversion," Solar Energy Materials and Solar Cells, 79(1), 35-49 (2003).
    9. E. I. Thorsos, "The Validity of the Kirchhoff Approximation for Rough-Surface Scattering Using a Gaussian Roughness Spectrum," Journal of the Acoustical Society of America, 83(1), 78-92 (1988).
    10. C. Macaskill, "Geometric Optics and Enhanced Backscatter from Very Rough Surfaces," Journal of the Optical Society of America A, 8(1), 88-96 (1991).
    11. M. E. Knotts and K. A. Odonnell, "Measurements of Light-Scattering by a Series of Conducting Surfaces with One-Dimensional Roughness," Journal of the Optical Society of America A, 11(2), 697-710 (1994).
    12. N. C. Bruce, "Scattering of Light from Surfaces with One-Dimensional Structure Calculated by the Ray-Tracing Method," Journal of the Optical Society of America A, 14(8), 1850-1858 (1997).
    13. K. K. Tang and R. O. Buckius, "The Geometric Optics Approximation for Reflection from Two-Dimensional Random Rough Surfaces," International Journal of Heat and Mass Transfer, 41(13), 2037-2047 (1998).
    14. H. J. Lee and Z. M. Zhang, "Applicability of Phase Ray-Tracing Method for Light Scattering from Rough Surfaces," Journal of Thermophysics and Heat Transfer, 21(2), 330-336 (2007).
    15. K. Fu and P. F. Hsu, "Radiative Properties of Gold Surfaces with One-Dimensional Microscale Gaussian Random Roughness," International Journal of Thermophysics, 28(2), 598-615 (2007).
    16. J. A. Ogilvy and J. R. Foster, "Rough Surfaces - Gaussian or Exponential Statistics," Journal of Physics D-Applied Physics, 22(9), 1243-1251 (1989).
    17. J. J. Wu, "Simulation of Rough Surfaces with FFT," Tribology International, 33(1), 47-58 (2000).
    18. M. Salami, M. Zamani, S. M. Fazeli and G. R. Jafari, "Two light beams scattering from a random rough surface by Kirchhoff theory," Journal of Statistical Mechanics-Theory and Experiment, (2011).
    19. Y. M. Xuan, Y. G. Han and Y. Zhou, "Spectral Radiative Properties of Two-Dimensional Rough Surfaces," International Journal of Thermophysics, 33(12), 2291-2310 (2012).
    20. W. Liu, Y. Y. Dai, H. Y. Yang and X. B. Xu, "Scattering of Object Buried below Random Rough Surface-A Monte Carlo Pseudospectral Time-Domain Approach," Electromagnetics, 32(6), 330-344 (2012).
    21. R. David and A. W. Neumann, "Computation of the Wetting Properties of Randomly Structured Superhydrophobic Surfaces," Journal of Physical Chemistry C, 116(31), 16601-16608 (2012).
    22. W. M. Zhang, G. Meng and Z. K. Peng, "Gaseous slip flow in micro-bearings with random rough surface," International Journal of Mechanical Sciences, 68, 105-113 (2013).
    23. P. Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions Second Edition, Norwegian Computing Center, Norway, (1997).
    24. K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media," IEEE Transactions on Antennas and Propagation, Ap14(3), 302-307 (1966).
    25. A. Taflove and M. E. Brodwin, "Numerical-Solution of Steady-State Electromagnetic Scattering Problems Using Time-Dependent Maxwells Equations," IEEE Transactions on Microwave Theory and Techniques, 23(8), 623-630 (1975).
    26. R. Holland, "Threde - Free-Field Emp Coupling and Scattering Code," IEEE Transactions on Nuclear Science, 24(6), 2416-2421 (1977).
    27. K. S. Kunz and K. M. Lee, "3-Dimensional Finite-Difference Solution of External Response of an Aircraft to a Complex Transient Em Environment .2. Comparison of Predictions and Measurements," IEEE Transactions on Electromagnetic Compatibility, 20(2), 333-341 (1978).
    28. G. Mur, "Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations," IEEE Transactions on Electromagnetic Compatibility, 23(4), 377-382 (1981).
    29. J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves," Journal of Computational Physics, 114(2), 185-200 (1994).
    30. Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, "A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition," IEEE Transactions on Antennas and Propagation, 43(12), 1460-1463 (1995).
    31. S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Transactions on Antennas and Propagation, 44(12), 1630-1639 (1996).
    32. K. Umashankar and A. Taflove, "A Novel Method to Analyze Electromagnetic Scattering of Complex Objects," IEEE Transactions on Electromagnetic Compatibility, 24(4), 397-405 (1982).
    33. A. Taflove and K. Umashankar, "Radar Cross-Section of General 3-Dimensional Scatterers," IEEE Transactions on Electromagnetic Compatibility, 25(4), 433-440 (1983).
    34. P. Harms, R. Mittra and W. Ko, "Implementation of the Periodic Boundary-Condition in the Finite-Difference Time-Domain Algorithm for Fss Structures," IEEE Transactions on Antennas and Propagation, 42(9), 1317-1324 (1994).
    35. J. Ren, O. P. Gandhi, L. R. Walker, J. Fraschilla and C. R. Boerman, "Floquet-Based FDTD Analysis of 2-Dimensional Phased-Array Antennas," IEEE Microwave and Guided Wave Letters, 4(4), 109-111 (1994).
    36. J. R. Marek and J. MacGillivray, "A Method for Reducing Run-Times of Out-of-Core FDTD Problems," Journal, 344 - 351 (1993).
    37. Y. C. A. Kao and R. G. Atkins, "A Finite Difference - Time Domain Approach for Frequency Selective Surfaces at Oblique Incidence," Journal, 1432-1435 (1996).
    38. J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney and P. H. Harms, "Time-Domain Analysis of Periodic Structures at Oblique Incidence: Orthogonal and Nonorthogonal FDTD Implementations," IEEE Transactions on Microwave Theory and Techniques, 46(4), 420-427 (1998).
    39. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite - Difference Time - Domain Method, Artech House, Boston, (2005).
    40. J. P. Berenger, "Perfectly Matched Layer for the FDTD Solution of Wave-Structure Interaction Problems," IEEE Transactions on Antennas and Propagation, 44(1), 110-117 (1996).
    41. C. Guiffaut and K. Mahdjoubi, "A Perfect Wideband Plane Wave Injector for FDTD Method," Journal, 236-238 (2000).
    42. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, Canada, (1989).
    43. Y. B. Chen, Z. M. Zhang and P. J. Timans, "Radiative Properties of Patterned Wafers with Nanoscale Linewidth," Journal of Heat Transfer-Transactions of the ASME, 129(1), 79-90 (2007).
    44. C. J. Chen, J. S. Chen and Y. B. Chen, "Optical Responses from Lossy Metallic Slit Arrays Under the Excitation of a Magnetic Polariton," Journal of the Optical Society of America B-Optical Physics, 28(8), 1798-1806 (2011).
    45. Y. B. Chen and K. H. Tan, "The Profile Optimization of Periodic Nano-Structures for Wavelength-Selective Thermophotovoltaic Emitters," International Journal of Heat and Mass Transfer, 53(23-24), 5542-5551 (2010).

    無法下載圖示 校內:2019-01-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE