簡易檢索 / 詳目顯示

研究生: 張凱勛
Chung, Kai-Hung
論文名稱: 鋯鈦酸鉛(Pb(ZrTi)O3)鐵電材料之奈米電域極化及反轉研究
Study of Nanoscale Polarization and Switching in PZT Ferroelectrics
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 鋯鈦酸鉛掃描探針顯微鏡奈米電性
外文關鍵詞: nano-electricity, SPM, PZT
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,以掃描式探針顯微鏡技術來探討奈米鐵電性質,包含電極化與電域翻轉等。樣品為有機金屬鹽裂解法製備之鋯鈦酸鉛 (Pb(ZrTi)O3, PZT) 鐵電性薄膜與模板合成法(template-based)製備之一維鋯鈦酸鉛奈米鐵電管。薄膜於高退火溫度(600℃以上)顯示具有擇優特性與良好的結晶特性。在掃描探針顯微鏡直接的觀察下顯示,結晶結構影響了奈米區域的鐵電性質。具(001)擇優的晶粒於垂直膜面的電壓施加下,可產生高的飽和極化值。結晶特性較差的薄膜,則易產生電滯偏移。本實驗中亦成功合成空心奈米鐵電管,管徑約150 nm, 管壁約厚10 nm。鐵電奈米管為多晶結構,而由於管壁厚度侷限鐵電晶粒與電域大小,其飽和極化與薄膜相較起來微弱許多,且亦有電滯偏移現象。

    In this study, nano-scale ferroelectric properties, including polarization and domain switching, were investigated by scanning probe microscopy (SPM). PZT (Pb(ZrTi)O3) thin films, which were synthesized by metal-organic decomposition, and 1-D PZT nanotubes, which were prepared by template-based method, were tested samples. Thin films annealed at higher temperature (>600℃) will possess preferred orientation and better crystalline phases. The SPM results show that nano- ferroelectricity is strongly related to the crystal structures. While a dc voltage was applied between the film and SPM tip, higher saturation polarization was induced on the grains with (001) preferred orientation. Moreover, the ferroelectric hysteresis of the films with worse crystaline phase shows bias shift. Ferroelectric hollow tubes of diameters about 150 nm and wall thickness about 10 nm were successfully synthesized and also investigated in this study. The tubes are mainly poly crystallization. Due to the narrow constriction of the tube-wall on the grain size and domains, ferroelectric tubes have weak ferroelectric polarization and serious hysteresis shift.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論....................1 第二章 文獻回顧................3 2.1 鐵電性.....................3 2.2 PZT鐵電材料................4 2.2.1 鈣鈦礦結構...............4 2.2.2 鋯鈦酸鉛(PZT)之相圖....7 2.2.3 變形相界(MPB)..........8 2.2.4 遲滯曲線.................9 2.3 鐵電性記憶體...............10 2.4 鐵電材料之發展及製作.......12 2.4.1 鐵電薄膜製作方法.........13 2.4.2 有機金屬鹽裂解法.........16 2.4.3 旋鍍法的原理.............17 2.4.4 鐵電奈米管製作方法.......19 2.5 掃描探針顯微術相關研究.....20 2.5.1 原子力顯微鏡.............22 2.5.2 靜電力顯微鏡.............26 2.5.3 壓電力顯微鏡.............28 第三章 實驗方法................31 3.1 鐵電薄膜的製作.............32 3.1.1 鍍膜基材準備.............32 3.1.2 基板之清洗...............32 3.1.3 薄膜的披覆...............32 3.2 鐵電性奈米管狀物的製作.....34 3.3 薄膜原子力顯微鏡量測.......37 3.3.1 樣品表面形貌量測.........37 3.3.2 靜電力顯微鏡的電性量測...38 3.3.3 壓電力顯微鏡的電性量測...38 3.3.4 極化強度-電場的量測......39 3.4 樣品基本特性檢測...........39 3.4.1 薄膜厚度量測.............39 3.4.2 X光繞射分析儀............40 3.4.3 掃瞄式電子顯微鏡.........40 第四章 結果與討論..............42 4.1 鋯鈦酸鉛(PZT)鐵電性薄膜的合成.42 4.1.1 退火溫度對晶相的影響.....43 4.1.2 退火溫度對表面結構的影響.46 4.1.3 膜厚量測.................52 4.2 膜厚量測...................55 4.2.1 填充製程對鐵電管的影響...55 4.2.2 奈米鐵電管微結構分析.58 4.2.3 奈米鐵電管X-ray晶相分析..61 4.3 奈米區域電性的研究.........61 4.3.1 靜電力顯微鏡(EFM)量測....62 4.3.2 壓電力顯微鏡(PFM)量測 ...66 4.3.3 電滯曲線的測量與分析.....70 第五章 結論....................76 參考文獻........................77 圖目錄 圖 2 1 鐵電域極化情形示意圖..............4 圖 2-2 鈣鈦礦結構示意圖..................5 圖 2-3 Pb(Zr0.2Ti0.8)O3 結構晶胞受極化圖.6 圖 2-4 PbZrO3-PbTiO3相圖.................7 圖 2-5 室溫下PbZrO3-PbTiO3系統的吉布斯自由能    圖.....8 圖 2-6 MPB成份材料性質表現圖.............9 圖 2-7 鐵電體的電滯曲線圖................10 圖 2-8 記憶體元件圖......................11 圖 2-9 旋鍍法示意圖......................18 圖 2-10 陽極氧化鋁模板....................20 圖 2-11 空心和實心之奈米管狀物圖..........20 圖 2-12 掃描探針顯微鏡裝置圖..............21 圖 2-13 一般探針與CNT探針所測得的表面形貌與電荷    分佈圖.....22 圖 2-14 凡得瓦力與距離關係圖..............23 圖 2-15 AFM探針運作模式圖.................24 圖 2-16 探針振盪振幅A與振盪頻率ω間的頻率響應關係    圖.....25 圖 2-17 靜電力顯微鏡裝置圖................26 圖 2-18 AFM表面形貌和EFM相位圖............27 圖 2-19 PZT薄膜的PFM影像圖................29 圖 2-20 鐵電樣品out-plane與in-plane的壓電回應訊    號圖.....30 圖 3-1 實驗流程圖........................31 圖 3-2 薄膜二階段退火升溫過程圖..........34 圖 3-3 管狀物製程流程圖..................35 圖 3-4 陽極氧化鋁實驗裝置圖..............35 圖 3-5 多孔性模版之填充與去除示意圖......36 圖 3-6 di-CP II 原子力顯微鏡.............37 圖 3-7 膜厚測量示意圖....................40 圖 4-1 不同退火溫度之鐵電薄膜X-Ray繞射圖.44 圖 4-2 晶相(100)與晶相(101)的峰值強度比值與溫度    關係圖......44 圖 4-3 PZT(100)與PZT(101)繞射角度與退火溫度關係    圖.....45 圖 4-4 不同退火溫度之鐵電薄膜表面一萬倍SEM圖.47 圖 4-5 不同退火溫度之鐵電薄膜表面五萬倍SEM圖.48 圖 4-6 不同退火溫度的鐵電薄膜之原子力顯微鏡表面    形貌圖......51 圖 4-7 退火溫度對薄膜表面結晶顆粒大小之趨勢圖52 圖 4-8 薄膜膜面與白金基板之間的AFM表面形貌圖.53 圖 4-9 不同退火溫度之薄膜的膜厚表示圖....54 圖 4-10 覆蓋前置溶液之氧化鋁模板圖........56 圖 4-11 第一種製程之氧化鋁模板截面圖......57 圖 4-12 第二種製程之氧化鋁模板截面圖......57 圖 4-13 第三種製程之氧化鋁模板截面圖......58 圖 4-14 模板溶解過程中顯露出來的奈米鐵電管圖..59 圖 4-15 單根與群聚的奈米鐵電管............60 圖 4-16 奈米鐵電管X-ray晶相分析圖.........61 圖 4-17 於550℃退火之PZT鐵電薄膜之EFM圖...63 圖 4-18 不同退火溫度之PZT鐵電薄膜之EFM圖..64 圖 4-19 奈米鐵電管EFM圖...................65 圖 4-20 於650℃退火之PZT 鐵電薄膜之正向壓電力顯    微鏡圖.67 圖 4-21 於600℃退火之PZT 鐵電薄膜之正向壓電力顯    微鏡圖.67 圖 4-22 於550℃退火之PZT 鐵電薄膜之正向壓電力顯    微鏡圖.68 圖 4-23 於500℃退火之PZT 鐵電薄膜之正向壓電力顯    微鏡圖.68 圖 4-24 側向壓電力顯微鏡10V飽和極化圖....69 圖 4-25 奈米鐵電管PFM圖..................69 圖 4-26 不同退火溫度之PZT薄膜於(100)晶粒上之正向    壓電力顯微鏡電滯曲線圖...........71 圖 4-27 不同退火溫度之PZT薄膜於(100)晶粒上之正向    壓電力顯微鏡電訊相位圖...........71 圖 4-28 退火溫度與翻轉電壓關係圖.........72 圖 4-29 退火溫度與偏移電壓關係圖.........72 圖 4-30 奈米鐵電管之電滯曲線圖...........73 圖 4-31 於600℃退火之PZT 鐵電薄膜於定點之壓電力    顯微鏡隨電壓改變之曲線圖.........74 圖 4-32 退火溫度與PFM極化強度關係圖......75

    1. Toshio Mitsui, Itaru Tatsuzaki and Eiji
     Nakamura, “An introduction to the physics of
     ferroelectrics”, Gordon and Breach Science
     Publishers, New York, (1976).
    2. Kenji Uchino, “Ferroelectric Devices”,
     Marcel Dekker, Inc., New York, (2000).
    3. Berdard Jaffe, William R. Cook and Hans Jaffe,
     “Piezoelectric Ceramics”, Academic Press
     Inc., London, (1970).
    4. William D. Callister, Jr., “Materials Science
     And Engineering”, John Wiley &Sons
     Inc.,3th,Canada, (1994).
    5. 鐘維烈, “鐵電體物理學”, 科學出版社, (2000).
    6. Patrycja Paruch, Thierry Giamarchi, Thomas
     Tybell and Jean-Marc Triscone,“Nanoscale
     studies of domain wall motion in epitaxial
     ferroelectric thin films”, American Physical
     Society, APS March Meeting, March, pp.21-25,
     (2005).
    7. Yuhuan. Xu, “Ferroelectric Material and
     Their Applications”, Elsevier,Amsterdam,
     (1991).
    8. Ian M. Reaney, Enrico L. Colla and Nava
     Setter, “Dielectric and Structural
     Characteristics of Ba- and Sr-based Complex
     Perovskites as a Function of Tolerance
     Factor”, Jpn. J. Appl., Vol. 33, pp. 3984-
     3990, (1994).
    9. A. J. Moulson and J. M. Herbert,
     “Electroceramics Materials Properties
     Applications”, Chapman&Hall, New York,(1990).
    10.J. Schaefer, W. Sigmund, S. Roy and F.
     Aldinger, “Low temperature synthesis of
     ultrafine Pb(Zr,Ti)O3 powder by sol-gel
     combustion”, Journal of Materials Reasearch,
     Vol.12, No.10, pp.2518-2521, (1997).
    11.R. E. Newnham and L. E. Cross, “Effect of
     elastic boundary conditions on morphotropic Pb
     (Zr,Ti)O3 piezoelectrics”, Phys. Rev. B,
     Vol.34, p.1595, (1986).
    12.Norman W. Schubring, Joseph V. Mantese,
     Adolph L. Micheli, Antonio B. Catalan, and
     Richard J. Lopez, “Charge Pumping And
     Pseudopyroelectric Effect In Active
     Ferroelectric Relaxor-Type Films”, Phys.
     Rev. Lett., Vol.65, p.1778, (1992).
    13.Wan Y. Shih, Wei-Heng Shin and Iihan A.
     Aksay,“Size dependence of the ferroelectric
     transition of small BaTiO3 particles: Effect
     of depolarization”, Phys. Rev. B, Vol.50,
     pp.15575-15585, (1994).
    14.Pushan Ayyub, Soma Chattopadhyay, R. Pinto
     and M. S. Multani,“Ferroelectric behavior in
     thin films of antiferroelectric materials”,
     Phys. Rev. B, Vol.57, pp.R5559-R5562, (1998).
    15.Wenjie Liang, Marc Bockrath, Dolores Bozovic,
     Jason H. Hafner, M. Tinkham and Hongkun Park,
     “Fabry-Perot interference in a nanotube
     electron waveguide”, Nature, Vol.411,
     p.665, (2001).
    16.Yun Luo, Izabela Szafraniak, Nikoiai D.
     Zakharon, Valanoor Nagarajan,“Nanoshell
     tubes of ferroelectric lead zirconate 
     titanate and barium titanate”, Appl. Phys.
     Lett., Vol.83, No.3, pp.440-442, (2003).
    17.T. Thurn-Albrecht, J. Schotter, G. A. Kastle,
     N. Emley, T. Shibauchi, L. Krusin-Elbaum, K.
     Guarini, C. T. Black, M. T. Tuominen and T.
     P. Russell,“Ultrahigh-Density Nanowire
     Arrays Grown in Self-Assembled Diblock
     Copolymer Templates”, Science, Vol.290,
     p.2126, (2000).
    18.Michael H. Huang, Samuel Mao, Henning Feick,
     Haoquan Yan, Yiying Wu, Hannes Kind, Eicke
     Weber, Richard Russo and Peidong Yang,“Room-
     Temperature Ultraviolet Nanowire
     Nanolasers”, Science, Vol.292, p.1897,(2001).
    19.Yi Cui and Charles M. Lieber,“Functional
     Nanoscale Electronic Devices Assembled Using
     Silicon Nanowire building Blocks”, Science,
     Vol.291, p.851, (2001).
    20.D. Vincenzi, M.A. Butturi, V. Guidi, M.C.
     Carotta, G. Martinelli, V. Guarnieri, S.
     Brida, B. Margesin, F. Giacomczzi, M. Zen,
     G.U. Pignatel, A.A. Vasiliev and A.V.
     Pisliakov,“Development of a low-power thick-
     film gas sensor deposited by screen-printing
     technique onto a micromachined hotplate”,
     Sensors and Actuators B, Vol.77, pp.95-99,
     (2001).
    21.Katsuhiko Shimomura, Takaaki Tsurumi, Yoko
     Ohba and Masaki Daimon,“Preparation of Lead
     Zirconate Titanate Thin Film by Hydrothermal
     Method”, Jpn. J. Appl., Vol.30, pp.2174-
     2177, (1991).
    22.Noboru Tohge, Satoshi Takahashi, and Tsutomu
     Minami,“Preparation of PbZrO3-PbTiO3
     Ferroelectric Thin Films by the Sol-Gel
     Process”, J. Am. Ceram. Soc., Vol.74, No.1,
     pp.67-71, (1991).
    23.John D. Mackenzie and Yuhuan Xu,
     “Ferroelectric Materials by Sol-Gel Method”,
     Journal of Sol-Gel Science and Technology,
     Vo8, pp.673-679, (1997).
    24.G. A. C. M. Spierings, M. J. E. Ulenaers, G.
     L. M. Kampschoer, H. A. M. van  Hal and P.
     K. Larsen, “Preparation And Ferroelectric
     Properties Of PbZr0.53Ti0.47O3 Thin Films By
     Spin Coating And Metalorganic
     Decomposition”, J. Appl. Phys., Vol.70,
     p.2290, (1991).
    25.Kien F. Teng, and Ping Wu, “Metallo-Organic
     Decomposition for Superconductive YB2Cu3O7-x
     Film”, IEEE Transactions on Components.
     Hybrids. And Manufacturing Technology,Vol.12,
     No.1, (1989).
    26.M. Ichiki, J. Akedo, A. Schroth, R. Maeda,
     and Y. Ishikawa, “X-Ray Diffraction And
     Scanning Electron Microscopy Observation Of
     Lead Zirconate Titanate Thick Film Formed By
     Gas Deposition Method”, Jpn. J. Appl. Phys.,
     Vol.36, pp.5818-5819, (1997).
    27.A. R. Raju and C. N. R. Rao,“Oriented
     Ferroelectric Thin Films Of PbTiO3,(Pb,La)TiO3
     And Pb (Zr,Ti)O3 by Nebulized Spray
     Pyrolysis”, Appl. Phys. Lett., Vol.66,pp.896-
     898, (1995).
    28.L. E. Scriven, “Physics and Applications of
     Dip Coating and Spin Coating”, Mat. Res. Soc
     Symp. Proc., Vol.121, pp.717-729, (1998).
    29.Charles R. Martin, “Template Synthesis of
     Elevtronically Conductive Polymer
     Nanostructures”, Acc. Chem. Res., Vol.28,
     pp.61-68, (1995).
    30.M. Steinhart, J. H. Wendorff, A. Greiner, R.
     B. Wehrspohn, K. Nielsch, J. Schilling, J.
     Choi and U. Go¬sele,“Polymer Nanotubes by
     Wetting of Ordered  Porous Templates”,
     SCIENCE, Vol.296, p.1997, (2002).
    31.Catalin Harnagea, Marin Alexe, Jo¨ rg
     Schilling, Jinsub Choi, Ralf B. Wehrspohn,
     Dietrich Hesse and Ulrich Go¨sele,“Mesoscopic
     ferroelectric cell arrays prepared by imprint
     lithography”, Appl. Phys. Lett., Vol.83,
     pp.1827-1829, (2003).
    32.Brinda B. Lakshmi, Charies J. Patrissi, and
     Charles R. Martin, “Sol-Gel Template
     Synthesis of Semiconductor Oxide Micro- and
     Nanostructures”, Chem. Mater., Vol.9,
     pp.2544-2550, (1997).
    33.John C. Hulteen and Charles R. Martin,
     “Ageneral template-based method for the
     preparation of nanomaterials”, J. Mater.
     Chem., Vol.7, pp.1075-1087, (1997).
    34.R.B. Wehrspohn and J. Schilling,
     “Electrochemically Prepared Pore Arrays for
     Photonic-Crystal Applications”, MRS Bull.,
     Vol. 8, pp.623, (2001).
    35.S. F. Kistler, “Surfactant Science Series”,
     Dekker, Vol.49, chap.6, New York, (1993).
    36.S.-D. Tzeng, C.-L. Wu, Y.-C. You, T. T. Chen
     and S. Gwo,“Charge imaging and manipulation
     using carbon nanotube probes”, Appl. Phys.
     Lett., Vol.81, No.23, (2003).
    37.陳力俊,“材料電子顯微鏡學”, 行政院國家科學委
     員會精密儀器發展中心, 民92。
    38.Sergei N. Magonov and Myung-Hwan Whangbo,
     “Surface analysis with STM and AFM :
     experimental and theoretical aspects of image
     analysis”, Weinheim ; New York : VCH, (1996).
    39.R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer,
     L. Howald, and H.-J. Gijntherodt, “Surface
     and domain structures of ferroelectric
     crystals studied with scanning force
     microscopy”, J. Appl. Phys., Vol.74, No.12,
     (1993).
    40.M. Alexe and A. Gruverman, “Nanoscale
     Characterisation of Ferroelectric
     Materials-Scanning Probe Microscopy
     Approach”, Springer, (2004).
    41.Seungbum Hong and Jungwon Woo, “Principle of
     ferroelectric domain imaging  using atomic
     force microscope”, J. Appl. Phys., Vol. 89,
     No.2, (2001).
    42.Long Ba, Jian Shu, Zhung Lu, Juntao Li, Wei
     Lei, Baoping Wang and Waisang Li,“Probing
     local electric field distribution of nanotube
     arrays using electrostatic force
     microscopy”, J. Appl. Phys., Vol.93, No.12,
     (2003).
    43.P. Guthner and K. Dransfeld, “Local poling
     of ferroelectric polymers by scanning force
     microscopy”, Appl. Phys. Lett., Vol. 61,
     pp.1137, (1992).
    44.Chia-Hui Chueh, “Studies of PZT thin films
     by variable-temperature piezoresponse force
     microscopy”, 國立清華大學物理研究所碩士論文,
     2003年。
    45.M. Abplanalp, L.M. Eng and P. Günter,
     “Mapping the domain distribution at
     ferroelectric surfaces by scanning force
     microscopy”, Appl. Phys. A, Vol.66, pp.s231-
     s234, (1998).
    46.Guowen Meng, Anyuan Cao, Ju-Yin Cheng,
     Aravind Vijayaraghavan, Yung Joon Jung,
     Mutsuhiro Shima and Pulickel M. Ajayan,
     “Ordered Ni nanowire tip arrays sticking out
     of the anodic aluminum oxide template”, J.
     Appl. Phys.,  Vol.97, p.064303, (2005).
    47.J. Zhang, L. D. Zhang, X. F. Wang, C. H.
     Liang, X. S. Peng and Y. W. Wang,“Fabrication
     and photoluminescence of ordered GaN nanowire
     arrays”, J. Chem. Phys., Vol.115, No.13,
     (2001).
    48.H. Hu, C. J. Peng and S. B. Krupanidhi,
     “Effect of heating rate on the
     crystallization behavior of amorphous PZT thin
     films”, Thin Solid Films, Vol.223, No. 2,
     pp. 327–333, (1993)
    49.Z. J. Wang, R. Maeda, and K. Kikuchi,“Effect
     of Pb content on electric properties of sol-
     gel derived lead zirconate titanate thin
     films prepared by three-step heat-treatment
     process”, Jpn. J. Appl. Phys., Vol.38,
     No.9B, pp. 5342–5345, (1999).
    50.H. J. Nam and D. K. Choi, “Formation of
     hillocks in Pt/Ti electrodes and effects and
     their effects on short phenomena of PZT films
     deposited by reactive sputtering”, Thin
     solid films, Vol.371, p.564, (2000).
    51.Sergei V. Kalinin, Alexei Gruverman and Dawn
     A. bonnell, “Quantitative analysis of
     nanoscale switching in SrBi2Ta2O9 thin films
     by piezoresponse   force microscopy”,Appl.
     Phys. Lett., Vol.85, pp.795-797, (2004).

    下載圖示 校內:2008-08-10公開
    校外:2008-08-10公開
    QR CODE