簡易檢索 / 詳目顯示

研究生: 林政廷
Lin, Zheng-Ting
論文名稱: 用於室內火災的搜尋方法
An Indoor Fire Search Approach
指導教授: 蔡佩璇
Tsai, Pei-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 45
中文關鍵詞: 搜救機器人搜尋順序決策群眾外包資訊建築物火災
外文關鍵詞: Rescue robot , Search sequence decision, Crowdsourcing information, Building fire
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據國際消防培訓協會(International Fire Service Training Association, IFSTA)的訓練手冊[1],對於搜尋室內火災受災者的原則是讓消防員沿著牆壁並依序搜尋的初步搜尋(Primary search)。初步搜尋可幫助消防員避免在陌生環境中迷路,並確保沒有遺漏任何受災者。然而,這可能會在沒有受災者的房間裡浪費時間,從而增加受災者的傷亡和消防員的危險。由於無人駕駛車的發展,機器人現在被用於火災中。在本研究中,機器人用於收集室內火災資訊,包括受災者的位置和危險區域,以加快搜尋速度並減少火災中的損失。本研究設計了一種加快搜救機器人搜尋速度的方法。透過基於群眾外包(Crowdsourcing)和環境資訊(Environmental information)估計受災者的位置和狀態來確定搜尋順序。搜救機器人採用最佳路徑規劃演算法執行該搜尋順序。本研究在模擬實驗中得到了驗證,實驗結果表明我們的方法提供了具有競爭力的表現,特別是在顯著減少受災者的平均搜尋時間方面。與初步搜尋相比,我們的方法將受災者的平均搜尋時間減少了 25%。

    According to IFSTA [1], the principle of searching victims in indoor fire is primary search which is sequential search along with the walls. Primary search assists firefighters to avoid being lost in unfamiliar environment and ensure no victim omitted. However, it possibly wastes time on rooms without victims so that increases casualty of victims and danger of firefighters. Owing to the development of unmanned vehicles, robots are now utilized in fires. In this paper, robots are used to collect indoor fire information including the locations of victims and the dangerous area to speed up search and decrease damages in fires. This study designs an approach for speeding up search of rescue robots. It determines the search sequence by estimating the locations and status of victims based on crowdsourced and environmental information. The rescue robot adopts optimal path planning algorithm to execute the search sequence. This study is validated in simulated experiments, and the experimental results demonstrate that our approach provides competitive performance, especially in significantly decreasing average search time of a victim. Compared to sequential search, our approach reduces the average search time of a victim by 25%.

    摘要 I ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究流程 6 第2章 文獻探討 7 2.1 室內火災搜尋 7 2.2 消防機器人 8 2.3 模糊理論 9 1.3.1 模糊化 10 1.3.2 模糊推論 11 1.3.3 解模糊 11 2.4 路徑規劃(Path Planning) 12 2.4.1 啟發式演算法 13 2.4.2傳統演算法 15 第3章 室內地圖建模(Indoor map modeling) 16 3.1 網格化(Gridding) 16 3.2 圖形化(Graphing) 17 第4章 群眾外包資訊處理 18 4.1 量化群眾外包資訊 19 4.1.1增強群眾外包資訊的可靠性 19 4.1.2表格評分法量化資訊 19 4.1.3標準化(Normalization) 20 4.2 群眾外包資訊模糊問題 21 4.2.1模糊化 21 4.2.2模糊推論 22 4.2.3解模糊化 23 4.2.4去標準化 24 4.3 多項存在分數(ES)融合 24 4.4 PVE估計房間存在受災者的機率 25 第5章 搜尋順序決策與路徑規劃 26 5.1 火災環境資訊 26 5.2 搜尋順序決策 27 5.3 搜尋路徑規劃 28 5.4 小結 28 第6章 實驗 29 6.1 設置模擬參數 29 6.2 評估指標 31 6.2.1 生存率 31 6.2.2 找到首位活著的受災者的時間 31 6.2.3 平均找到一位受災者的時間 32 6.3 模擬實驗結果 32 6.3.1 PVE的可靠度對於生存率的影響 33 6.3.2 存在受災者的房間比例對於生存率的影響 34 6.3.3存在受災者的房間比例對於TFSV的影響 35 6.3.4存在受災者的房間比例對於ATSV的影響 37 第7章 結論與未來工作 38 7.1 結論 38 7.2 未來工作 39 參考文獻 40

    [1] IFSTA, Essentials of Fire Fighting 7th Edition, Fire Protection Publications, 2018.
    [2] U.S. Fire Administration, “Nonresidential Building Fires (2017‑2019)”, Topical Fire Report Series, 21, 9, 2021.
    [3] J. Spell, “A firefighter’s guide to fireground search and rescue,” firerescue1. [Online]. Available: https://www.firerescue1.com/fire-products/rescue-equipment/articles/a-firefighters-guide-to-fireground-search-and-rescue-part-2-TRLszcH6HvQpBhlJ/
    [4] Rita F. Fahy, Jay T. Petrillo, Joseph L. Molis, “Firefighter Fatalities in the United States,” National Fire Protection Association, 2020.
    [5] S. Li, C. Feng, Y. Niu, L. Shi, Z. Wu, H. Song, “A Fire Reconnaissance Robot Based on SLAM Position, Thermal Imaging Technologies, and AR Display,” Sensors, 19, 5036, 2019.
    [6] H. S. Sucuoglu, I. Bogrekci, P. Demircioglu, “Development of Mobile Robot with Sensor Fusion Fire Detection Unit,” IFAC, pp. 430-435, 2018.
    [7] Y. Wang, P. Tian, Y. Zhou, Q. Chen, “The Encountered Problems and Solutions in the Development of Coal Mine Rescue Robot,” Journal of Robotics, 2019.
    [8] L. Jiang, Z. Pengcheng, D. Wei, L. Jiayuan, A. Mingyao, W. Xuan, H. Qingwu, “An Eight-Direction Scanning Detection Algorithm for the Mapping Robot Pathfinding in Unknown Indoor Environment,” Sensors, 18:4254, 2018.
    [9] A. Piyusha, C. Akshay, M. Anshul, Mishra, P. Swati, “Review Paper Based on Cleaning Robot,” International Journal of Research and Engineering, 3:6, pp.6-8, 2016.
    [10] Julio E. Normey-Rico, Ismael Alcalá, Juan Gómez-Ortega, Eduardo F. Camacho., “Mobile robot path tracking using a robust PID controller,” Control Engineering Practice, 9(11), pp.1209-1214, 200.
    [11] Y. Jiang, X. Xiaojun, L. Zhang, Z. Tengan, “Model free predictive path tracking control of variable-configuration unmanned ground vehicle, ” ISA Transactions, 2022,
    [12] A.M. Ribeiro, C.H.C. Quiroz, A.R. Fioravanti, P.R.G. Kurka “On Differential Drive Robot Learning Convex Policy with Application to Path-Tracking,”54(4), pp.7-12, 2021.
    [13] Tao Ding, Yuhao Zhang, Guocai Ma, Zhihong Cao, Xingwei Zhao, Bo Tao, “Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint, Mechatronics,”84, 2022.
    [14] W. Ziqiang, X. Hegen, W. Youwen, “Wheeled Robots Path Planing and Tracking System Based on Monocular Visual SLAM,” IEEE International Conference on Automation Science and Engineering, 2018.
    [15] D. Zhang, S. Sessa, R. Kasai, S. Cosentino, C. Giacomo, Y. Mochida, H. Yamada, M. Guarnieri and A. Takanishi, “Evaluation of a Sensor System for Detecting Humans Trapped under Rubble: A Pilot Study,” Sensors, 18, 852, 2018.
    [16] Shuo Zhang, Jiantao Yao, Ruochao Wang, Zisheng Liu, Chenhao Ma, Yingbin Wang, Yongsheng Zhao., “Design of intelligent fire-fighting robot based on multi-sensor fusion and experimental study on fire scene patrol,” Robotics and Autonomous Systems, 154, 2022.
    [17] C. Bailey, “Firefighting tactics for saving victims,” firerescue1. [Online]. Available: https://www.firerescue1.com/
    cod-company-officer-development/articles/
    firefighting-tactics-for-saving-victims-PsXEQUdA0YP5duIo/
    [18] Changwei Miao, Guangzhu Chen, Chengliang Yan, Yuanyuan Wu., “Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm,” Computers & Industrial Engineering, 156, 2021.
    [19] K. Kamila, H. Tomaz, S. Jan, H. Markéta, B. Denisa, K. Dionysios, L. Elzbieta, S. H. Anne, “Fire-fighting and Bio-Based Materials,” 2019.
    [20] J. Carr, “An introduction to genetic algorithms,” 2014.
    [21] V. Selvi, and R. Umarani. “Comparative analysis of ant colony and particle swarm optimization techniques,” International Journal of Computer Applications, 5.4, pp.1-6, 2010.
    [22] N. Xiong, X. Zhou, X. Yang, Y. Xiang and J. Ma, “Mobile Robot Path Planning Based on Time Taboo Ant Colony Optimization in Dynamic Environment,” Front in Neurorobot, 15:642733, 2021.
    [23] S. Benhlima, L. Chaymaa, & A. Bekri, “Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning,” Procedia Computer Science, 127, 2018.
    [24] S. Su, J. Han, and Y. Xiong, “Optimization of unmanned ship's parametric subdivision based on improved multi-objective PSO,” Ocean Engineering, 194, pp.1-12, 2019.
    [25] N. Milad, K. Esmaeel, D. Samira, “Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm,” Expert Systems with Applications, 115, pp. 106-120, 2019.
    [26] Nyq Kabelev., What is primary search, Primary search International, [Online]. Available: http://primarysearch.org/en/intro/definitions/search-types
    [27] Pavol Pecho, Paulína Magdolenová, Martin Bugaj, “Unmanned aerial vehicle technology in the process of early fire localization of buildings,” Transportation Research Procedia, Vol 40, pp. 461-468, 2019.
    [28] Zadeh, L, A., “Fuzzy Sets”, Information and Control, Vol.8, pp.339-353, 1965.
    [29] B.K. Patlea, Ganesh Babu L b, Anish Pandey c, D.R.K. Parhi d, A. Jagadeesh. A review: On path planning strategies for navigation of mobile robot. Defense Technology, pp.582-606, 2019.
    [30] Pei, Z., & Chen, X. Improved ant colony algorithm and its application in obstacle avoidance for robot. CAAI Transactions on Intelligent Systems, 10(01), 90–96, 2015.
    [31] You, X., Liu, S., & Lv, J. Ant colony algorithm based on dynamic search strategy and its application on path planning of robot. Control and Decision, 32(3), 552–556, 2017.
    [32] Jiang, M., Wang, F., Ge, Y., & Sun, L. Research on path planning of mobile robot based on improved ant colony algorithm. Chinese Journal of Scientific Instrument, 40(02), 113–121, 2019.
    [33] Changwei Miao, Guangzhu Chen, Chengliang Yan, Yuanyuan Wu. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Computers & Industrial Engineering, 156, 2021.
    [34] Utkarsh Rajput and Madhu Kumari. Mobile robot path planning with modified ant colony optimization. International Journal of Bio-Inspired Computation, 9(2), 106-113, 2017.
    [35] J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” 1995.
    [36] Milad Nazarahari, Esmaeel Khanmirza, Samira Doostie. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications, 115, 106–120, 2019.
    [37] M. Asaduzzaman, T.K. Geok, F. Hossain, S. Sayeed, Abdaziz, A., H.-Y. Wong, C.P. Tso, S. Ahmed, M.A. Bari, “An Efficient Shortest Path Algorithm: Multi-Destinations in an Indoor Environment,” Symmetry, 13, 421, 2021.
    [38] Sven Koenig., Maxim Likhachev., “D* Lite,” AAAI-02 Proceedings, pp.476-483, 2002.
    [39] H. Garcia-Molina, M. Joglekar, A. Marcus, A. Parameswaran and V. Verroios, “Challenges in Data Crowdsourcing,” IEEE Transactions on Knowledge and Data Engineering, 28(4), pp. 901-911, 2016.
    [40] B. Naderi, T. Hoßfeld, M. Hirth, F. Metzger, S. Möller and R. Z. Jiménez, “Impact of the Number of Votes on the Reliability and Validity of Subjective Speech Quality Assessment in the Crowdsourcing Approach,” 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1-6, 2020.
    [41] Fire Power and Instructor’s Guide, National Fire Protection Association, 1986.
    [42] Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera. John Wiley & Sons, “Fundamentals of Heat and Mass Transfer,” 7th Edition. Incorporated, 2011.
    [43] T. L. Graham, G. M. Makhviladze & J. P. Roberts. On the Theory of Flashover Development. Fire Safety Journal, 25, pp.229-259, 1995.
    [44] Z. Nie and H. Zhao, "Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization," 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 222-226, 2020.
    [45] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger and P. Feyzeau, “Path planning: A 2013 survey,” Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM), pp. 1-8, 2013.
    [46] H. Wang, Z. Zhou, “A Heuristic Elastic Particle Swarm Optimization Algorithm for Robot Path Planning,” Information, 10(3):99, 2019.
    [47] N. J. Nilsson, “Principles of Artificial Intelligence,” Wellsboro, PA: Tioga, 1980.
    [48] Raheem, F.A., Hameed, U.I., “Path Planning Algorithm using D* Heuristic Method Based on PSO in Dynamic Environment,” American Scientific Research Journal for Engineering, Technology, and Sciences, 49, pp. 257-271, 2018.

    下載圖示 校內:2024-07-25公開
    校外:2024-07-25公開
    QR CODE